高三數學備考策略有哪些
高考數學怎么備考
一、調理大腦思緒,提前進入數學情境
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態,創設數學情境,進而醞釀數學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態準備應考。
二、“內緊外松”,集中注意,消除焦慮怯場
集中注意力是數學考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
三、沉著應戰,確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到數學試題后,不要急于求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然后穩操一兩個易題熟題,讓自己產生 “旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的“門坎效應”,之后做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。
高三數學怎么學習
1.基礎知識系統復習
在復習時我們首先要認真研究新課程標準,摸清初中數學內容的脈絡,開展基礎知識系統復習。我們按照數與代數、空間與幾何、統計與概率、實踐與綜合應用四個模塊,按照課程標準給學生重新梳理哪些知識點是識記,哪些知識點是理解,哪些知識點是運用。
如在復習實數時,我們將實數的有關知識按照課標要求中的識記、理解、運用整理出來,然后以教科書為藍本進行基礎知識復習,將每個知識點給學生整理出來,在這里我們要求學生過“三關”:第一關“記憶關”,必須做到記牢記準所有的公式、定理等,沒有準確無誤的記憶,就不可能有好的結果;第二關過基本方法關,如:待定系數法求二次函數基礎知識;第三關過基本技能關,如,給你一個題,你找到了它的解題方法,也就是知道了用什么辦法,這時就說具備解這個題的技能。其基本宗旨:知識系統化,練習專題化,專題規律化。在這一階段的教學把書中的內容進行歸納整理、組塊,使之形成結構。
2.扎扎實實打好基礎
①重視課本,系統復習,數學基礎知識包括基礎知識和基本技能兩個方面。現在的高考命題中基礎題的份額為60%,分數約90分,占有最大的比重。這些基礎題有的就是由課本上的原題改編而成,是教材題目的引申、變形或組合,所以復習不可拋開課本。在復習時必須深鉆教材,把書中的內容進行歸納整理,使之形成自己的知識結構,尤其是教材中的“思考”、“探究”等,高考題有可能就在此基礎上延伸、拓展。一味地搞題海戰術,整天埋頭做大量練習題,效果并不一定理想。做題時應注意對解題方法的歸納和整理,做到舉一反三、融會貫通。
②夯實基礎,學會思考,高考中有90分左右為基礎題,若把中檔題、難度題中的基礎分也加入,占的比值會更大,所以在應用基礎知識時應做到熟練、正確、迅速。上課不能只聽老師講,要敢于質疑,積極思考方法和策略,應通過老師的教,自己“悟”出來,自己“學”出來,尤其在解決信息給予問題的過程中,應感悟出如何正確思考。
3.優化知識體系,提升數學思想
盡管剩下的復習時間不多,但仍要注意回歸課本,當然回歸課本不是死記硬背,不是像第一輪復習那樣“事”無巨細,面面俱到,而是抓綱悟本,對照課本進行回憶和梳理知識。近幾年高考數學試題都能在課本中找到“原型”,所以要對課本典型問題進行挖掘推廣,發揮其應有的作用。
在知識專題復習中可以進一步鞏固第一輪復習的成果,加強各知識模塊的綜合。尤其注意在知識的交叉點和結合點,進行必要的針對性專題復習。如,平面向量與三角函數,平向向量與解析幾何的綜合等。在方法專題復習中,以這些重點知識的綜合性題目為載體,滲透對數學思想和方法的系統學習。
高考數學知識點
斜邊是指直角三角形中最長的那條邊,也指不是構成直角的那條邊。在勾股定理中,斜邊稱作“弦”。
三角形斜邊長等于根號下兩直角邊的平方和,即斜邊c=√(a^2+b^2)
解答過程如下:
(1)在直角三角形中滿足勾股定理—在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等于斜邊長的平方。數學表達式:a2+b2=c2
(2)a2+b2=c2求c,因為c是一條邊,所以就是求大于0的一個根。即c=√(a2+b2)。
在幾何中,斜邊是直角三角形的最長邊,與直角相對。直角三角形的斜邊的長度可以使用畢達哥拉斯定理找到,該定理表示斜邊長度的平方等于另外兩邊長度的平方和。例如,如果其中一方的長度為3(平方,9),另一方的長度為4(平方,16),那么它們的正方形加起來為25。斜邊的長度為平方根25,即5。
高考數學必考知識點
一個推導
利用錯位相減法推導等比數列的前n項和:
Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
兩個防范
(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數列,還要驗證a1≠0.
(2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.
三種方法
等比數列的判斷方法有:
(1)定義法:若an+1/an=q(q為非零常數)或an/an-1=q(q為非零常數且n≥2且n∈N_),則{an}是等比數列.
(2)中項公式法:在數列{an}中,an≠0且a=an·an+2(n∈N_),則數列{an}是等比數列.
(3)通項公式法:若數列通項公式可寫成an=c·qn(c,q均是不為0的常數,n∈N_),則{an}是等比數列.
注:前兩種方法也可用來證明一個數列為等比數列.
高考數學復習知識點
1.求導法則:
(c)/=0這里c是常數。即常數的導數值為0。
(xn)/=nxn-1特別地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x)
2.導數的幾何物理意義:
k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。
V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.導數的應用:
①求切線的斜率。
②導數與函數的單調性的關系
已知
(1)分析的定義域;
(2)求導數
(3)解不等式,解集在定義域內的部分為增區間
(4)解不等式,解集在定義域內的部分為減區間。
我們在應用導數判斷函數的單調性時一定要搞清以下三個關系,才能準確無誤地判斷函數的單調性。以下以增函數為例作簡單的分析,前提條件都是函數在某個區間內可導。
③求極值、求最值。
注意:極值≠最值。函數f(x)在區間[a,b]上的值為極大值和f(a)、f(b)中的一個。最小值為極小值和f(a)、f(b)中最小的一個。
f/(x0)=0不能得到當x=x0時,函數有極值。
但是,當x=x0時,函數有極值f/(x0)=0
判斷極值,還需結合函數的單調性說明。
4.導數的常規問題:
(1)刻畫函數(比初等方法精確細微);
(2)同幾何中切線聯系(導數方法可用于研究平面曲線的切線);
(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關于次多項式的導數問題屬于較難類型。
關于函數特征,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。
導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。