數(shù)學(xué)對稱問題(4)
時間:
未知2
數(shù)學(xué)備考
函數(shù)圖象本身關(guān)于直線和點的對稱問題我們有如下幾個重要結(jié)論:
1、函數(shù)f(x)定義線為R,a為常數(shù),若對任意x∈R,均有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于x=a對稱。
這是因為a+x和a-x這兩點分別列于a的左右兩邊并關(guān)于a對稱,且其函數(shù)值相等,說明這兩點關(guān)于直線x=a對稱,由x的任意性可得結(jié)論。
例如對于f(x)若t∈R均有f(2+t)=f(2-t)則f(x)圖象關(guān)于x=2對稱。若將條件改為f(1+t)=f(3-t)或f(t)=f(4-t)結(jié)論又如何呢?第一式中令t=1+m則得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同樣結(jié)論即關(guān)于x=2對稱,由此我們得出以下的更一般的結(jié)論:
2、函數(shù)f(x)定義域為R,a、b為常數(shù),若對任意x∈R均有f(a+x)=f(b-x),則其圖象關(guān)于直線x=對稱。
我們再來探討以下問題:若將條件改為f(2+t)=-f(2-t)結(jié)論又如何呢?試想如果2改成0的話得f(t)=-f(t)這是奇函數(shù),圖象關(guān)于(0,0)成中心對稱,現(xiàn)在是f(2+t)=-f(2-t)造成了平移,由此我們猜想,圖象關(guān)于M(2,0)成中心對稱。如圖,取點A(2+t,f(2+t))其關(guān)于M(2,0)的對稱點為A′(2-x,-f(2+x))
∵-f(2+X)=f(2-x)`A′的坐標(biāo)為(2-x,f(2-x))顯然在圖象上
?。鄨D象關(guān)于M(2,0)成中心對稱。
若將條件改為f(x)=-f(4-x)結(jié)論一樣,推廣至一般可得以下重要結(jié)論:
3、f(X)定義域為R,a、b為常數(shù),若對任意x∈R均有f(a+x)=-f(b-x),則其圖象關(guān)于點M(,0)成中心對稱。