高中必背數學公式匯總
(一)兩角和公式
1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
3、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
(二)倍角公式
1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A
2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA
(三)半角公式
1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
(四)和差化積公式
1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
(五)幾何體表面積和體積公式
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高)
3、正方體:表面積:S=6a2,體積:V=a3(a-邊長)
4、長方體:表面積:S=2(ab+ac+bc)體積:V=abc(a-長,b-寬,c-高)
5、棱柱:體積:V=Sh(S-底面積,h-高)
6、棱錐:體積:V=Sh/3(S-底面積,h-高)
7、棱臺:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面積,S2下底面積,h-高)
8、擬柱體:V=h(S1+S2+4S0)/6(S1-上底面積,S2-下底面積,S0-中截面積,h-高)
9、圓柱:S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
(r-底半徑,h-高,C—底面周長,S底—底面積,S側—側面積,S表—表面積)
10、空心圓柱:V=πh(R^2-r^2)(R-外圓半徑,r-內圓半徑,h-高)
11、直圓錐:V=πr^2h/3(r-底半徑,h-高)
12、圓臺:V=πh(R2+Rr+r2)/3(r-上底半徑,R-下底半徑,h-高)
13、球:V=4/3πr^3=πd^3/6(r-半徑,d-直徑)
14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半徑,a-球缺底半徑)
15、球臺:V=πh[3(r12+r22)+h2]/6(r1球臺上底半徑,r2-球臺下底半徑,h-高)
16、圓環體:V=2π2Rr2=π2Dd2/4(R-環體半徑,D-環體直徑,r-環體截面半徑,d-環體截面直徑)
(六)橢圓公式
1、橢圓周長公式:l=2πb+4(a-b)
2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積
如何提高高中數學成績
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
3、熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。
4、經常對知識結構進行梳理,形成板塊結構,如表格化,使知識結構一目了然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納于同一知識方法。
5、閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
6、及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏固,消滅前學后忘。
學好數學的方法有哪些
學習數學最重要的是方法,如果把學習比作一場戰爭,那么,學習方法就如同手中作戰的武器,如果沒有正確的學習方法,最后的結果就只能是不戰而敗。當然,沒有天生就不會學習的人,也沒有天生的差生,只有不會學習的人,和沒有掌握學習方法的人。
想要學好數學,首先就要把絆腳石變為墊腳石,俗話說,勤能補拙,所以,在學習數學的時候,就要突出一個勤字,克服懶惰,只有這樣才能打好數學基礎,才能取得好成績。
其次,想要學好數學就要動腦加動手,動腦就是學會觀察分析問題,學會思考,不要拿到數學題就做,要找到題目間的聯系,并解決問題。動手就是多實踐,多做題。這樣才能最大的發揮大腦的效率。
最后,想要學好數學,就要重視教科書,這是教學和考試的主要依據;同樣還要記好筆記,最好還要有一個錯題。
數學怎么才能得高分
數學想要得高分,首先要掌握好基礎知識,還要有拓展的意識,這一點在數學的學習中是一直存在的。學生需要認真研讀教材,最好可以把大綱中規定的考試知識點都深入的理解,并融會貫通,這樣才能為學好數學打好基礎。
大家可以結合輔導書和大綱,先吃透基本概念,方法和定理,才能掌握好數學基礎,才能找到解題的突破口和切入點。數學考試的所有任務就是解題,而基本概念,公式,結論等只有在反復練習匯總才能真正的理解和鞏固。
數學考試中經常有一些能夠應用到多個知識點的綜合型試題和應用型試題。這類試題一般會比較靈活,難度相對較大。在首輪復習期間,雖然它們不是重點,但是也應該有目的的進行訓練,并積累解題經驗,這樣有利于對所學知識的吸收和消化。所以,往年的真題一定要反復做,當然時間需要掌握好。
學數學的小方法
有良好的學習興趣,試著去培養數學得興趣,久而久之,你就會發現數學并不是那么得難,試著多看看有關數學的動漫以及書本,都可以培養你對數學的興趣。
課前復習,試著看一看書上的原話,沒看懂的地方用記號筆畫上,等上課的時候認真聽課,把沒聽懂的地方聽懂,也可以舉手問老師,老師會為你講解。
重視對概念的理解,不要去把那些能理解的話死記硬背下來,理解就行,實在不行就舉例子,如:因為正數大于0,負數小于0,所以正數大于負數。一步步去把它推導出來,當然,基礎還是要背的,其他理解了就行。
強大的空間想象力,學習幾何圖形都需要強大的空間想象力,而培養空間想象力的方法就是:1.善于畫圖,多畫圖,2.用教學器具培養你的觀察想象力,3.如第一個,學,練習,畫,有助于想象力的培養。4.自己多做實驗,使抽象化的物體變的立體起來。
找一個學習超好,班里前3的人作為“敵人”,試著把他作為你的仇人,想想自己為什么超不過他,為什么學習沒他強,試著激怒自己,并努力超過他,有時候,成功是需要敵人的幫助的。
正確面對事實,假如你在一次考試中考差了,不要灰心,多想想自己為什么會錯在那個地方,做好考后一百分,這樣后,把錯題寫在錯題本上,并把方法和錯題答法寫在上面,有助于你的下一次考試成績提高,用名人的一句話來說:沒有失敗,何有成功?以及愛迪生說的:失敗乃成功之母。考差的時候多想想這些話,鼓勵自己。
課內認真聽講,課后努力復習。上課要跟著老師思路來,老師講哪里你看哪里,不懂下課就去問,上課積極舉手,養成聽課好習慣,下課休息時光去上個廁所就回來,趴在課桌上想想老師講過的內容,腦內放電影,提高效率。
多做題,養成良好習慣。想要學好數學,多做題是難免的,當你攻克完一道題以后,不要急著去做下一題,試著用其他辦法,看能不能做出這道題,做不出,要積極詢問老師,老師會為你講解,你只需要把方法記住,套路記住就行了。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。