高中數學知識點梳理
第一、遺忘空集是任何非空集合的真子集,因此對于集合B,就有B=A、φ≠B、B≠φ三種情況出現。在實際解題中,如果考生思維不夠縝密,就有可能忽視第三種情況,導致結果出錯。尤其是在解含有參數的集合問題時,要充分注意當參數在某個范圍內取值時所給的集合可能是空集這種情況。空集是一個特殊集合,考生因思維定式遺忘集合導致結果出錯或不全面是常見的錯誤,一定要倍加當心。
第二、忽視集合元素的三性集合元素具有確定性、無序性、互異性的特點,在三性中,數互異性對答題的影響最大,尤其是帶有字母參數的集合,實際上就隱含著對考生字母參數掌握程度的要求。在考場答題時,考生可先確定字母參數的范圍,再一一具體解決。
第三、四種命題結構不明若原命題為“若 A則B”,則逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里將會出現兩組等價的命題:“原命題和它的逆否命題等價”,“否命題與逆命題等價”。考生在遇到“由某一個命題寫出其他形式命題”的題型時,要首先明確四種命題的結構以及它們之間的等價關系。
在否定一個命題時,要記住“全稱命題的否定是特稱命題,特稱命題的否定是全稱命題”的規律。如對“a,b都是偶數”的否定應該是“a,b不都是偶數”,不是“a ,b都是奇數”。
第四、充分必要條件顛倒兩個條件A與B,若A=>B成立,則A是B的充分條件,B是A的必要條件;若B=>A成立,則A是B的必要條件,B是A的充分條件;若A<=>B,則AB互為充分必要條件。考生在解這類題時最容易出錯的點就是顛倒了充分性與必要性,一定要根據充要條件的概念作出準確的判斷。
第五、邏輯聯結詞理解不準確
在判斷含邏輯聯結詞的命題時,考生很容易因理解不準確而出錯。小編在這里給出一些常用的判斷方法,希望同學們牢牢記住并加以運用。
p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括為一真即真);
p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);
┐p真<=>p假,┐p假<=>p真(概括為一真一假)。
高中數學知識點梳理
函數與導數
第一、求函數定義域題忽視細節函數的定義域是使函數有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據函數解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數的定義域。
在求一般函數定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數大于0以及0的0次冪無意義。函數的定義域是非空的數集,在解答函數定義域類的題時千萬別忘了這一點。復合函數要注意外層函數的定義域由內層函數的值域決定。
第二、帶絕對值的函數單調性判斷錯誤帶絕對值的'函數實質上就是分段函數,判斷分段函數的單調性有兩種方法:第一,在各個段上根據函數的解析式所表示的函數的單調性求出單調區間,然后對各個段上的單調區間進行整合;第二,畫出這個分段函數的圖象,結合函數圖象、性質能夠進行直觀的判斷。函數題離不開函數圖象,而函數圖象反應了函數的所有性質,考生在解答函數題時,要第一時間在腦海中畫出函數圖象,從圖象上分析問題,解決問題。
對于函數不同的單調遞增(減)區間,千萬記住,不要使用并集,指明這幾個區間是該函數的單調遞增(減)區間即可。
第三、求函數奇偶性的常見錯誤求函數奇偶性類的題最常見的錯誤有求錯函數定義域或忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等等。判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域區間關于原點對稱,如果不具備這個條件,函數一定是非奇非偶的函數。在定義域區間關于原點對稱的前提下,再根據奇偶函數的定義進行判斷。
在用定義進行判斷時,要注意自變量在定義域區間內的任意性。
第四、抽象函數推理不嚴謹很多抽象函數問題都是以抽象出某一類函數的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數中一些具體函數的性質去解決抽象函數。多用特殊賦值法,通過特殊賦可以找到函數的不變性質,這往往是問題的突破口。
抽象函數性質的證明屬于代數推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規范。
第五、函數零點定理使用不當若函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,且有f(a)f(b)<0。那么函數y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數的零點定理,分為“變號零點”和“不變號零點”,而對于“不變號零點”,函數的零點定理是“無能為力”的,在解決函數的零點時,考生需格外注意這類問題。
第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。
因此,考生在求解曲線的切線問題時,首先要區分是什么類型的切線。
第七、混淆導數與單調性的關系一個函數在某個區間上是增函數的這類題型,如果考生認為函數的導函數在此區間上恒大于0,很容易就會出錯。
解答函數的單調性與其導函數的關系時一定要注意,一個函數的導函數在某個區間上單調遞增(減)的充要條件是這個函數的導函數在此區間上恒大(小)于等于0,且導函數在此區間的任意子區間上都不恒為零。
第八、導數與極值關系不清考生在使用導數求函數極值類問題時,容易出現的錯誤就是求出使導函數等于0的點,卻沒有對這些點左右兩側導函數的符號進行判斷,誤以為使導函數等于0的點就是函數的極值點,往往就會出錯,出錯原因就是考生對導數與極值關系沒搞清楚。可導函數在一個點處的導函數值為零只是這個函數在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數求函數極值時,一定要對極值點進行仔細檢查。
數學考高分的小訣竅
1、基礎不牢,地動山搖。
數學想考高分,基礎是最重要的,這也是很多學生數學成績一直不好的核心原因,牢記基本公式和基本定理,根據課本目錄,能熟練回憶出課本上所有知識點,真正打牢基礎,你才有學好數學的可能。
2、從基礎題由淺入深進行練習。
不少人對數學學習徹底失去了信心,甚至感覺自己就不是學習數學的料,其實都是平時不會選題,基礎差還總愛做難題,最后被打擊的自信心全無。正確的做法是從最基礎的題目開始做,先完成老師布置的作業,然后再每天給自己準備一定數量的題目,題目的選擇應該從淺入深,基礎不好就先做簡單的題目,一點一點加深難度 。
3、不要怕問。
數學想考滿分,你的知識體系必須非常完美,知識沒有任何漏洞才行。遇到問題千萬不要放棄,一定要多問多想,遇到不會的難題,不要硬靠自己,要敢于走出去找老師解答,在這個過程中,你可以體會老師的解題方法和老師的解題思想,更有效地利用做題時間。
4、錯題本必須要有。
有人經常說,數學學霸們的學習方法并不適合所有人,但錯題本學習法確實是人人都應該掌握的一個高效學習法。如果不想錯題一錯再錯,錯題本是必須要有的。最重要的是經常出錯的題要多看,也可以的錯題進行歸類,不然你整理再多錯題作用也不大。
高中數學解題方法
避免“會而不對”的錯誤習慣
解題時應仔細閱讀題目,看清數字,規范解題格式,養成良好解題習慣。部分同學(尤其是腦子比較好的同學)自我感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規范。但在正規考試中即使答案對了,由于過程不完整而扣分較多。
還有一部分同學平時學習過程中自信心不足,做作業時免不了互相對答案,也不認真找出錯誤原因并加以改正。這些同學到了考場上常會出現心理性錯誤,導致“會而不對”,或是為了保證正確率,反復驗算,費時費力,影響整體得分。這些問題很難在短時間得以解決,必須在平時養成良好解題習慣。
“會而不對”是高三數學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學習習慣,必須在第一輪復習中逐步克服,否則,后患無窮。
可結合平時解題中存在的具體問題,逐題找出原因,看其到底是行為習慣方面的原因,還是知識方面的缺陷,再有針對性地加以解決。必要時要作些記錄,也就是“錯題筆記”。每過一段時間,就把“錯題筆記”或標記錯題的試卷復習一遍。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側重。
高中數學答題注意事項
越是容易的題要越小心,因為這樣的題很可能有陷阱。
出現怪異的答案的題要小心,因為很有可能計算錯誤。
任何帶有數字的題要多問一下自己,有沒有遺漏答案,如出現2的答案,就要考慮-2有沒有可能也是答案。
最后一道填空題很有可能是難題,如果不能馬上解出,應迅速放在一邊進行下面答題,畢竟這道題再難也分數也有限,不應戀戰。