2017高考數(shù)學(xué)知識點 高考數(shù)學(xué)易錯知識點
2017高考數(shù)學(xué)知識點
2、常用邏輯用語(充要條件,全稱量詞與存在量詞的判定);
3、函數(shù)的概念與性質(zhì)(奇偶性、對稱性、單調(diào)性、周期性、值域最大值最小值);
4、冪、指、對函數(shù)式運算及圖像和性質(zhì)
5、函數(shù)的零點、函數(shù)與方程的遷移變化(通常用反客為主法及數(shù)形結(jié)合思想);
6、空間體的三視圖及其還原圖的表面積和體積;
7、空間中點、線、面之間的位置關(guān)系、空間角的計算、球與多面體外接或內(nèi)切相關(guān)問題;
8、直線的斜率、傾斜角的確定;直線與圓的位置關(guān)系,點線距離公式的應(yīng)用;
9、算法初步(認(rèn)知框圖及其功能,根據(jù)所給信息,幾何數(shù)列相關(guān)知識處理問題);
10、古典概型,幾何概型理科:排列與組合、二項式定理、正態(tài)分布、統(tǒng)計案例、回歸直線方程、獨立性檢驗;文科:總體估計、莖葉圖、頻率分布直方圖;
11、三角恒等變形(切化弦、升降冪、輔助角公式);三角求值、三角函數(shù)圖像與性質(zhì);
12、向量數(shù)量積、坐標(biāo)運算、向量的幾何意義的應(yīng)用;
13、正余弦定理應(yīng)用及解三角形;
14、等差、等比數(shù)列的性質(zhì)應(yīng)用、能應(yīng)用簡單的地推公式求其通項、求項數(shù)、求和;
15、線性規(guī)劃的應(yīng)用;會求目標(biāo)函數(shù);
16、圓錐曲線的性質(zhì)應(yīng)用(特別是會求離心率);
17、導(dǎo)數(shù)的幾何意義及運算、定積分簡單求法
18、復(fù)數(shù)的概念、四則運算及幾何意義;
19、抽象函數(shù)的識別與應(yīng)用;
第二部分:解答題
第17題:向量與三角交匯問題,解三角形,正余弦定理的實際應(yīng)用;
第18題:(文)概率與統(tǒng)計(概率與統(tǒng)計相結(jié)合型)
(理)離散型隨機變量的概率分布列及其數(shù)字特征;
第19題:立體幾何
①證線面平行垂直;面與面平行垂直
②求空間中角(理科特別是二面角的求法)
③求距離(理科:動態(tài)性)空間體體積;
第20題:解析幾何(注重思維能力與技巧,減少計算量)
①求曲線軌跡方程(用定義或待定系數(shù)法)
②直線與圓錐曲線的關(guān)系(靈活運用點差法和弦長公式)
③求定點、定值、最值,求參數(shù)取值的問題;
第21題:函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用
這是一道典型應(yīng)用知識網(wǎng)絡(luò)的交匯點設(shè)計的試題,是考查考生解題能力和數(shù)學(xué)素質(zhì)為目標(biāo)的壓軸題。
主要考查:分類討論思想;化歸、轉(zhuǎn)化、遷移思想;整體代換、分與合思想
一般設(shè)計三問:
①求待定系數(shù),利用求導(dǎo)討論確定函數(shù)的單調(diào)性;
②求參變數(shù)取值或函數(shù)的最值;
③探究性問題或證不等式恒成立問題。
第22題:三選一:
(1)幾何證明主要考查三角形相似,圓的切割線定理,證明成比例,求角度,求長度;利用射影定理解決圓中計算和證明問題是歷年高考題的熱點;
(2)坐標(biāo)系與參數(shù)方程,主要抓兩點:參數(shù)方程、極坐標(biāo)方程互化為普通方程;有參數(shù)、極坐標(biāo)方程求解曲線的基本量。這類題,思路清晰,難度不大,抓基礎(chǔ),不做難題。
(3)不等式選講:絕對值不等式與函數(shù)結(jié)合型。設(shè)計上為:①解含有參變數(shù)關(guān)于x的不等式;②求解不等式恒成立時參變數(shù)的取值;③證明不等式(利用均值定理、放縮法等)。
2017高考數(shù)學(xué)易錯知識點
1、進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解、
2、在應(yīng)用條件時,易A忽略是空集的情況
3、你會用補集的思想解決有關(guān)問題嗎?
4、簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5、你知道“否命題”與“命題的否定形式”的區(qū)別、
6、求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則、
7、判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱、
8、求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域、
9、原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)、例如:、
10、你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法
11、 求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示、
12、求函數(shù)的值域必須先求函數(shù)的定義域。
13、如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題)、這幾種基本應(yīng)用你掌握了嗎?
14、解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15、三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?
16、用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。
17、“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當(dāng)時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?
不等式
18、利用均值不等式求最值時,你是否注意到:“一正;二定;三等”、
19、絕對值不等式的解法及其幾何意義是什么?
20、解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
21、解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”、
22、 在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示、
23、 兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a
數(shù)列
24、解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25、在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。
26、你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?
27、數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
28、應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。
三角函數(shù)
29、正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
30、三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
31、 在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
32、 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角、 異角化同角,異名化同名,高次化低次)
33、 反正弦、反余弦、反正切函數(shù)的取值范圍分別是
34、你還記得某些特殊角的三角函數(shù)值嗎?
35、掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)、你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?
36、函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即、
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即、
(3)點的平移公式:點按向量平移到點,則、
37、在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)
38、形如的周期都是,但的周期為。
39、正弦定理時易忘比值還等于2R、
平面向量
40、數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。
41、數(shù)量積與兩個實數(shù)乘積的區(qū)別:
在實數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出、
已知實數(shù),且,則a=c,但在向量的數(shù)量積中沒有、
在實數(shù)中有,但是在向量的數(shù)量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量、
42、是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
解析幾何
43、在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
44、用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
45、直線的傾斜角、到的角、與的夾角的取值范圍依次是。
46、 定比分點的坐標(biāo)公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
47、 對不重合的兩條直線
(建議在解題時,討論后利用斜率和截距)
48、 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時,直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。
49、解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達、(①設(shè)出變量,寫出目標(biāo)函數(shù)②寫出線性約束條件③畫出可行域④作出目標(biāo)函數(shù)對應(yīng)的系列平行線,找到并求出最優(yōu)解⑦應(yīng)用題一定要有答。)
50、三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個特征三角形你掌握了嗎?
51、圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?
52、利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?
53、 通徑是拋物線的所有焦點弦中最短的弦、(想一想在雙曲線中的結(jié)論?)
54、 在用圓錐曲線與直線聯(lián)立求解時,消元后得到的方程中要注意:二次項的系數(shù)是否為零?橢圓,雙曲線二次項系數(shù)為零時直線與其只有一個交點,判別式的限制、(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行)、
55、解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?
立體幾何
56、你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
57、線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?
58、三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見
59、線面平行的判定定理和性質(zhì)定理在應(yīng)用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大、
60、求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法、
61、異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應(yīng)用時一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。
62、你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?
63、 兩條異面直線所成的角的范圍:0°<α≤90°< p="">
直線與平面所成的角的范圍:0o≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
64、你知道異面直線上兩點間的距離公式如何運用嗎?
65、平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關(guān)幾何元素的“不變量”與“不變性”。
66、立幾問題的求解分為“作”,“證”,“算”三個環(huán)節(jié),你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節(jié)?
67、棱柱及其性質(zhì)、平行六面體與長方體及其性質(zhì)、這些知識你掌握了嗎?(注意運用向量的方法解題)
68、球及其性質(zhì);經(jīng)緯度定義易混、 經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式、 這些知識你掌握了嗎?
排列、組合和概率
69、 解排列組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合、
解排列組合問題的規(guī)律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優(yōu)先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排后排法;至多至少問題間接法、
70、二項式系數(shù)與展開式某一項的系數(shù)易混, 第r+1項的二項式系數(shù)為 。二項式系數(shù)最大項與展開式中系數(shù)最大項易混、二項式系數(shù)最大項為中間一項或兩項;展開式中系數(shù)最大項的求法要用解不等式組來確定r、
71、你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發(fā)生的概率公式;③相互獨立事件同時發(fā)生的概率公式、)
72、 二項式展開式的通項公式、n次獨立重復(fù)試驗中事件A發(fā)生k次的概率易記混。
通項公式:它是第r+1項而不是第r項;
事件A發(fā)生k次的概率: 、其中k=0,1,2,3,…,n,且0
73、求分布列的解答題你能把步驟寫全嗎?
74、如何對總體分布進行估計?(用樣本估計總體,是研究統(tǒng)計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義、)
75、你還記得一般正態(tài)總體如何化為標(biāo)準(zhǔn)正態(tài)總體嗎?(對任一正態(tài)總體來說,取值小于x的概率,其中表示標(biāo)準(zhǔn)正態(tài)總體取值小于 的概率)
導(dǎo)數(shù)及其應(yīng)用
76、在點處可導(dǎo)的定義你還記得嗎?它的幾何意義和物理意義分別是什么?利用導(dǎo)數(shù)可解決哪些問題?具體步驟還記得嗎?
77、你會用“在其定義域內(nèi)可導(dǎo),且不恒為零,則在某區(qū)間上單調(diào)遞增(減)對恒成立。”解決有關(guān)函數(shù)的單調(diào)性問題嗎?
78、你知道“函數(shù)在點處可導(dǎo)”是“函數(shù)在點處連續(xù)”的什么條件嗎
看過“高考數(shù)學(xué)易錯知識點”