高考數學函數重要知識點
高考數學函數重要知識點
1.函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
2.復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由“同增異減”判定;
3.函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱,高中數學;
(6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;
高考數學39個必考知識點
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什么區別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區別.
6.求解與函數有關的問題易忽略定義域優先的原則.
7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱.
8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.
9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.
10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值,作差,判正負)和導數法
11.求函數單調性時,易錯誤地在多個單調區間之間添加符號“∪”和“或”;單調區間不能用集合或不等式表示.
12.求函數的值域必須先求函數的定義域。
13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題).這幾種基本應用你掌握了嗎?
14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?
(真數大于零,底數大于零且不等于1)字母底數還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。
17.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?
18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
19.絕對值不等式的解法及其幾何意義是什么?
20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
21.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.
24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。
26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?
27.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)
28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。
29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?
30.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數的取值范圍分別是
34.你還記得某些特殊角的三角函數值嗎?
35.掌握正弦函數、余弦函數及正切函數的圖象和性質.你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?
36.函數的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數的圖象的平移為“左+右-,上+下-”;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等于2R.
高考數學不等式記憶口訣
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
高考數學復習要點
1、突出主干知識,加強薄弱環節
在二輪復習中,對高中數學的重點內容:函數、不等式、數列、幾何體中的線面關系、直線與圓錐曲線及新增加內容中的向量、概率統計、導數進行強化復習。其中,函數是高中數學的核心內容,又是學習高等數學的基礎,貫穿于高中數學的始終,運用函數的觀點,可以從較高的角度去處理方程、不等式、數列、曲線和方程等問題。打破知識之間的界限,加強各章節知識之間的橫向聯系。
在第二輪復習時,要求學生一是要認真分析自己一輪復習的感受及作業、試卷情況,針對第一輪的薄弱環節,加強研究。二是要針對性地選擇一些課本的典型習題、近年的高考題、模擬題,甚至是第一輪中做過的題,集中強化訓練,提高一個檔次。
2、提高思維能力
解數學題要著重研究解題的思維過程,弄清基本數學知識和基本數學思想在解題中的意義和作用,研究運用不同的思維方法解決同一數學問題的多條途徑。要求學生重視審題和解體后的總結、反思,不斷積累正、反兩方面的經驗。
3、注重心理訓練
學習實力與心理狀態是高考成功的兩大基本要素,良好的心態是高考制勝的'法寶。在測試或訓練題中要在適當的位置設置障礙或有意識的引入新情景、新信息問題,有意識的鍛煉學生心理素質,增強學生的應變能力和知識遷移能力,提高學生應試技巧。但要把握好度,不能過于挫傷學生的自信心和積極性;
4、提高計算能力
數學高考歷來重視運算能力,80%以上的分數都要通過運算而來。部分運算能力差的學生至今仍然沒有對此有足夠重視,而是將運算能力差完全歸結于粗心,認為平時運算是浪費時間。我們必須清楚地認識到運算是一種能力和技能,必須從每一道題做起,堅持長期訓練,要能夠根據題設條件,合理運用概念、公式、法則、定理,提高運算的準確性。
怎么學好高中數學
一、理清概念、夯實基礎
1.要透徹理解各章節公式定理,數學試卷中的各個小題都是依據各章節的概念、公式定理及知識點來進行的,它們是解題的理論基礎,同時也是提高解題能力的關鍵所在。因此要透徹理解各種定義的由來、內容、特征,掌握其本質,并注意新舊概念間的有機聯系,使數學各個基礎知識點成為判斷的有力工具。
2.要明確定理、公式的成立條件、推證思路、主要功能,只有這樣,應用時才會心中有數、有的放矢。比如:在等差數列中定義用于證明是否等差數列。
學習數學概念不僅要解決是什么與怎么樣的問題,更要解決是怎樣想到的即怎么來的問題,以及有了這個概念以后,理論將怎樣建立與發展起來。這樣弄清概念、公式、法則、定理的來龍去脈,了解公式的推導過程及實際意義,使新舊知識聯成一片,才能掌握完整的、系統的知識,才會運用,即使在忘記了的時候也能自己推導出來。
3.要在對定理、公式理解變通的基礎上牢固記憶,以記導用,以用促記,這樣,用起來才能得心應手。
二、總結技巧、重寫錯題
要認真領會數學教材中的例題,做到舉一反三,觸類旁通。要認真總結其中的規律,歸納其中所用的技巧和思路,學會運用這些技巧和思路來解決問題。
比如,準備一本錯題本與典型題本,把平時不會做與做錯的題,重新認真地做一遍,并加以總結出技巧,找出原來錯誤所在,并把正確的做法記住。
三、掌握方法、提高解題技能
解題練習是數學學習中最基本的訓練方法,一定要思路開闊,靈活多變。解題證題也是學好數學的重要方面,做足夠數量的習題練習,是鞏固數學基礎知識和掌握基本技能的必要途徑。
解題能力的高低,證題方法的得當,決定于分析問題和解決問題的能力。這種能力一方面取決于對基礎知識的理解程度,另一方面又是在練習作業中鍛煉培養出來的。在練習作業中會訓練思維,開拓思路。