高中數學公式最新整理
y = ax^2+bx+c 就是y等于ax的平方加上b
a > 0時開口向上
a < 0時開口向下
c = 0時拋物線經過原點
b = 0時拋物線對稱軸為y軸
拋物線標準方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0)準線方程為x=-p/2
由于拋物線的焦點可在任意半軸,故共有標準方程y^2=2px y^2=-2px x^2=2py x^2=-2py
面積公式
圓的體積公式 4/3(pi)(r^3)
圓的面積公式 (pi)(r^2)
圓的周長公式 2(pi)r
正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側面積 S=c·h 斜棱柱側面積 S=c'·h
正棱錐側面積 S=1/2c·h' 正棱臺側面積 S=1/2(c+c')h'
圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi·r2
圓柱側面積 S=c·h=2pi·h 圓錐側面積 S=1/2·c·l=pi·r·l
弧長公式 l=a·r a是圓心角的弧度數r>0 扇形面積公式 s=1/2·l·r
錐體體積公式 V=1/3·S·H 圓錐體體積公式V=1/3·pi·r2h
斜棱柱體積 V=S'L 注:其中S'是直截面面積L是側棱長
柱體體積公式 V=s·h 圓柱體V=pi·r2h
橢圓周長計算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
橢圓面積計算公式
橢圓面積公式:S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
三角函數公式
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3
導數公式
y=f(x)=c (c為常數) 則f'(x)=0
f(x)=x^n (n不等于0) f'(x)=nx^(n-1)(x^n表示x的n次方)
f(x)=sinx f'(x)=cosx
f(x)=cosx f'(x)=-sinx
f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logaX f'(x)=1/xlna(a>0且a不等于1,x>0)
f(x)=lnx f'(x)=1/x(x>0)
f(x)=tanx f'(x)=1/cos^2x
f(x)=cotx f'(x)=-1/sin^2x
導數運算法則
加法法則:(f(x)-g(x))'=f'(x)-g'(x)
減法法則:(f(x)+g(x))'=f'(x)+g'(x)
乘法法則:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法則:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2
高三復習數學的方法
1.回歸課本,鞏固基礎:高考倒計時是回歸課本的時候了,不要把課本丟下,著重看課本上的公式、理論、定理,學會變換,把基礎打牢了自然能舉一反三,靈活運用。
2.避免題海戰術:對于一看就會的題型直接pass掉,做精題,精做題。不要什么都做沒有選擇,沒有計劃,如果每一題都做不僅會浪費時間而且也提高不了多少。
3.不專注于難題:不會的題不要一個人在那死扣,如果一道題你看了20分鐘都沒有思路,無從下手,要么請教高手要么放棄,不要專注于難題。盡量做一些看起來會但是不能全面做出來的題,克服會而做不對,對而做不全,這樣提升空間比較大。
4.各類題的解題方法:不同的題型有不同的解題方法,要善于歸納和整理。要選擇填空題可以選擇排除法、帶進去驗證、直覺、數形結合的方法。簡單的題答得時候盡量要全面。壓軸題,選擇、填空、答題都各自的壓軸題,會做就做不會做就暫時放棄,先把會的題做出來后再回過頭看。
5.訓練考試意境:把每次訓練都當做高考,數學的復習離不開做題,但是做題量不能太大,做題的時候更應該模擬高考的時間和場景,下午三點到五點考數學,所以在復習的時候也在這個時間做題,適應高考模式。
高三怎么復習數學
抓典型題型,重視通性通法,講清易錯易混點。注重一題多解,熟悉通性通法,重一題多變,講深、講透難點,達到做一題會一片的功效。此階段強調運算對成績的貢獻,數學運算是學習數學的基本功。高考試題在考查考生運算能力的同時,還要考查考生思維的靈活性。所以,要使學生的運算能力得到提高,必須培養學生的觀察能力和分析問題的能力,盡可能優化解題結構、減少運算量,從而提高運算的準確性。為了實現這一目標,要讓學生學會猜算、估算、巧算。
另外,要求集中訓練選填題,講解與總結解決選擇題與填空題的方法。選擇題鼓勵學生積極思維敢于篩選,特別是有的答案已擺在面前,可用特例法、驗證法、圖解法、結論法等。近幾年的高考題選擇題中,有很多題目就可以使用技巧,有的甚至不需要動筆就能得出答案。通過模擬考試和選填訓練,目的是培養學生的應試能力和技巧,規范解題和做題速度、難度。
最后調整階段是溫書階段,調整心理,回到基礎,回歸課本,對課本內容重新整理做到胸有成竹,增強信心,自我調整作息,以平和的心態迎接高考。
高考數學選擇題答題技巧是什么
1.剔除法:利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。
2.特特殊值檢驗法:對于具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
如何提高數學成績
一、課內重視聽講,課后及時復習
接受一種新的知識,主要實在課堂上進行的,所以要重視課堂上的學習效率,找到適合自己的學習方法,上課時要跟住老師的思路,積極思考。下課之后要及時復習,遇到不懂的地方要及時去問,在做作業的時候,先把老師課堂上講解的內容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急于翻看答案。還要經常性的總結和復習,把知識點結合起來,變成自己的知識體系。
二、多做題,養成良好的解題習慣
要想學好數學,大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數學成績。剛開始做題的時候先以書上習題為主,答好基礎,然后逐漸增加難度,開拓思路,練習各種類型的解題思路,對于容易出現錯誤的題型,應該記錄下來,反復加以聯系。在做題的時候應該養成良好的解題習慣,集中注意力,這樣才能進入最佳的狀態,形成習慣,這樣在考試的時候才能運用自如。