高中數(shù)學(xué)公式匯總
高中數(shù)學(xué)公式匯總:三角函數(shù)誘導(dǎo)公式
公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三: 任意角α與 -α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
推算公式:3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
誘導(dǎo)公式口訣:“奇變偶不變,符號(hào)看象限”。
“奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。
符號(hào)判斷口訣:
“一全正;二正弦;三兩切;四余弦”。這十二字口訣的意思就是說: 第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”; 第二象限內(nèi)只有正弦是“+”,其余全部是“-”; 第三象限內(nèi)只有正切和余切是“+”,其余全部是“-”; 第四象限內(nèi)只有余弦是“+&rdquo 高二;,其余全部是“-”。
“ASCT”反Z。意即為“all(全部)”、“sin”、“cos”、“tan”按照將字母Z反過來寫所占的象限對(duì)應(yīng)的三角函數(shù)為正值。
高中數(shù)學(xué)公式匯總:等差數(shù)列求和公式
公式 Sn=(a1+an)n/2 Sn=na1+n(n-1)d/2; (d為公差) Sn=An2+Bn; A=d/2,B=a1-(d/2)
和為 Sn 首項(xiàng) a1 末項(xiàng) an 公差d 項(xiàng)數(shù)n通項(xiàng)
首項(xiàng)=2×和÷項(xiàng)數(shù)-末項(xiàng) 末項(xiàng)=2×和÷項(xiàng)數(shù)-首項(xiàng) 末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差 項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))(除以)/ 公差+1 公差=如:1+3+5+7+……99 公差就是3-1 d=an-a
性質(zhì): 若 m、n、p、q∈N
①若m+n=p+q 學(xué)習(xí)方法,則am+an=ap+aq
②若m+n=2q,則am+an=2aq 注意:上述公式中an表示等差數(shù)列的第n項(xiàng)。
高中數(shù)學(xué)公式匯總:集合與函數(shù)公式定理記憶口訣
集合與函數(shù)公式定理口訣
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。
性質(zhì)奇偶與增減 高中化學(xué),觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,
若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。
底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,
偶次方根須非負(fù),零和負(fù)數(shù)無對(duì)數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;
其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;
圖象互為軸對(duì)稱,Y=X是對(duì)稱軸;
求解非常有規(guī)律,反解換元定義域;
反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);
函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);
圖象第一象限內(nèi),函數(shù)增減看正負(fù)。