必胜高考网_全国高考备考和志愿填报信息平台

必勝高考網 > 高考備考 > 數學備考 >

高考必備的數學公式

時間: 李金 數學備考

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba

|a-b||a|-|b| -|a|a|a|

一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1__X2=c/a 注:韋達定理

判別式

2-4ac=0 注:方程有兩個相等的實根

2-4ac0 注:方程有兩個不等的實根

2-4ac0 注:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

in(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)

cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)

tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))

ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和

1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7++n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱側面積 S=c__h 斜棱柱側面積 S=c__h

正棱錐側面積 S=1/2c__h 正棱臺側面積 S=1/2(c+c)h

圓臺側面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi__r2

圓柱側面積 S=c__h=2pi__h 圓錐側面積 S=1/2__c__l=pi__r__l

弧長公式 l=a__r a是圓心角的弧度數r 0 扇形面積公式 s=1/2__l__r

錐體體積公式 V=1/3__S__H 圓錐體體積公式 V=1/3__pi__r2h

斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側棱長

柱體體積公式 V=s__h 圓柱體 V=pi__r2h

通項公式的求法:

(1)構造等比數列:凡是出現關于后項和前項的一次遞推式都可以構造等比數列求通項公式;

(2)構造等差數列:遞推式不能構造等比數列時,構造等差數列;

(3)遞推:即按照后項和前項的對應規律,再往前項推寫對應式。

已知遞推公式求通項常見方法:

①已知a1=a,an+1=qan+b,求an時,利用待定系數法求解,其關鍵是確定待定系數,使an+1 +=q(an+)進而得到。

②已知a1=a,an=an-1+f(n)(n2),求an時,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。

③已知a1=a,an=f(n)an-1(n2),求an時,利用累乘法求解。

高考數學秒殺公式

1

適用條件:[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。x為分離比,必須大于1。

注上述公式適合一切圓錐曲線,如果焦點內分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。

2

函數的周期性問題(記憶三個):

1、若f(x)=-f(x+k),則T=2k;

2、若f(x)=m/(x+k)(m不為0),則T=2k;

3、若f(x)=f(x+k)+f(x-k),則T=6k。注意點:a.周期函數,周期必無限b.周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。

3

關于對稱問題(無數人搞不懂的問題)總結如下:

1,若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對稱軸為x=(a+b)/2;

2、函數y=f(a+x)與y=f(b-x)的圖像關于x=(b-a)/2對稱;

3、若f(a+x)+f(a-x)=2b,則f(x)圖像關于(a,b)中心對稱。

4

函數奇偶性:

1、對于屬于R上的奇函數有f(0)=0;

2、對于含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項

3,奇偶性作用不大,一般用于選擇填空

5

數列定律:1,等差數列中:S奇=na中,例如S13=13a7(13和7為下角標);2等差數列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比數列中,上述2中各項在公比不為負一時成等比,在q=-1時,未必成立4,等比數列爆強公式:S(n+m)=S(m)+qmS(n)可以迅速求q

6

數列的終極利器,特征根方程。(如果看不懂就算了)。首先介紹公式:對于an+1=pan+q(n+1為下角標,n為下角標),a1已知,那么特征根x=q/(1-p),則數列通項公式為an=(a1-x)p(n-1)+x,這是一階特征根方程的運用。二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數列可以構造(兩邊同時加數)

7

函數詳解補充:

1、復合函數奇偶性:內偶則偶,內奇同外

2、復合函數單調性:同增異減

3、重點知識關于三次函數:恐怕沒有多少人知道三次函數曲線其實是中心對稱圖形。

它有一個對稱中心,求法為二階導后導數為0,根x即為中心橫坐標,縱坐標可以用x帶入原函數界定。另外,必有唯一一條過該中心的直線與兩旁相切。

8

常用數列bn=n×(2n)求和Sn=(n-1)×(2(n+1))+2記憶方法:前面減去一個1,后面加一個,再整體加一個2

9

適用于標準方程(焦點在x軸)爆強公式:k橢=-{(b)xo}/{(a)yo}k雙={(b)xo}/{(a)yo}k拋=p/yo注:(xo,yo)均為直線過圓錐曲線所截段的中點。

10

兩直線垂直或平行的必殺技:已知直線L1:a1x+b1y+c1=0直線L2:a2x+b2y+c2=0若它們垂直:(充要條件)a1a2+b1b2=0;若它們平行:(充要條件)a1b2=a2b1且a1c2≠a2c1[這個條件為了防止兩直線重合)注:以上兩公式避免了斜率是否存在的麻煩,直接必殺!

11

經典中的經典:相信鄰項相消大家都知道。下面看隔項相消:對于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]注:隔項相加保留四項,即首兩項,尾兩項。自己把式子寫在草稿紙上,那樣看起來會很清爽以及整潔!

12

△面積公式:S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:這個公式可以解決已知三角形三點坐標求面積的問題!

13

空間立體幾何中:以下命題均錯:1,空間中不同三點確定一個平面;2,垂直同一直線的兩直線平行;3,兩組對邊分別相等的四邊形是平行四邊形;4,如果一條直線與平面內無數條直線垂直,則直線垂直平面;5,有兩個面互相平行,其余各面都是平行四邊形的幾何體是棱柱;6,有一個面是多邊形,其余各面都是三角形的幾何體都是棱錐注:對初中生不適用。

14

一個小知識點:所有棱長均相等的棱錐可以是三、四、五棱錐。

15

求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n為正整數)的最小值。答案為:當n為奇數,最小值為(n-1)/4,在x=(n+1)/2時取到;當n為偶數時,最小值為n/4,在x=n/2或n/2+1時取到。

16

√〔(a+b)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b為正數,是統一定義域)

17

橢圓中焦點三角形面積公式:S=btan(A/2)在雙曲線中:S=b/tan(A/2)說明:適用于焦點在x軸,且標準的圓錐曲線。A為兩焦半徑夾角。

18

重要定理:空間向量三公式解決所有題目:cosA=|{向量a.向量b}/[向量a的模×向量b的模]|一:A為線線夾角,二:A為線面夾角(但是公式中cos換成sin)三:A為面面夾角注:以上角范圍均為[0,派/2]。

19

重要公式1+2+3+…+n=1/6(n)(n+1)(2n+1);13+23+33+…+n3=1/4(n)(n+1)

20

切線方程記憶方法:寫成對稱形式,換一個x,換一個y。舉例說明:對于y=2px可以寫成y×y=px+px再把(xo,yo)帶入其中一個得:y×yo=pxo+px

21

重要定理:(a+b+c)n的展開式[合并之后]的項數為:Cn+22,n+2在下,2在上

22

[轉化思想]切線長l=√(d-r)d表示圓外一點到圓心得距離,r為圓半徑,而d最小為圓心到直線的距離。

23

對于y=2px,過焦點的互相垂直的兩弦AB、CD,它們的和最小為8p。爆強定理的證明:對于y=2px,設過焦點的弦傾斜角為A.那么弦長可表示為2p/〔(sinA)〕,所以與之垂直的弦長為2p/[(cosA)],所以求和再據三角知識可知。(題目的意思就是弦AB過焦點,CD過焦點,且AB垂直于CD)

24

一個重要絕對值不等式:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣

25

關于解決證明含ln的不等式的一種思路:舉例說明:證明1+1/2+1/3+…+1/n>ln(n+1)把左邊看成是1/n求和,右邊看成是Sn。解:令an=1/n,令Sn=ln(n+1),則bn=ln(n+1)-lnn,那么只需證an>bn即可,根據定積分知識畫出y=1/x的圖。an=1×1/n=矩形面積>曲線下面積=bn。

當然前面要證明1>ln2。注:僅供有能力的童鞋參考!!另外對于這種方法可以推廣,就是把左邊、右邊看成是數列求和,證面積大小即可。說明:前提是含ln。

26

簡潔公式:向量a在向量b上的射影是:〔向量a×向量b的數量積〕/[向量b的模]。記憶方法:在哪投影除以哪個的模

27

一個易錯點:若f(x+a)[a任意]為奇函數,那么得到的結論是f(x+a)=-f(-x+a)〔等式右邊不是-f(-x-a)〕,同理如果f(x+a)為偶函數,可得f(x+a)=f(-x+a)牢記!

28

離心率公式:e=sinA/(sinM+sinN)注:P為橢圓上一點,其中A為角F1PF2,兩腰角為M,N。

29

橢圓的參數方程也是一個很好的東西,它可以解決一些最值問題。比如x/4+y=1求z=x+y的最值。解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!

30

重點公式:和差化積sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

積化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2

31

重要定理:直觀圖的面積是原圖的√2/4倍。

32

三角形垂心定理:1,向量OH=向量OA+向量OB+向量OC(O為三角形外心,H為垂心)2,若三角形的三個頂點都在函數y=1/x的圖象上,則它的垂心也在這個函數圖象上。

33

維維安尼定理(不是很重要),--正三角形內(或邊界上)任一點到三邊的距離之和為定值,這定值等于該三角形的高。

34

一種解題思路:如果出現兩根之積x1x2=m,兩根之和x1+x2=n,我們應當形成一種思路,那就是返回去構造一個二次函數,再利用△大于等于0,可以得到m、n范圍。

35

常用結論:過(2p,0)的直線交拋物線y=2px于A、B兩點。O為原點,連接AO.BO。必有角AOB=90度

36

重要公式:ln(x+1)≤x(x>-1)該式能有效解決不等式的證明問題。舉例說明:ln(1/(2)+1)+ln(1/(3)+1)+…+ln(1/(n)+1)<1(n≥2)證明如下:令x=1/(n),根據ln(x+1)≤x有左右累和右邊再放縮得:左和<1-1/n<1證畢!

37

函數y=(sinx)/x是偶函數。在(0,派)上它單調遞減,(-派,0)上單調遞增。利用上述性質可以比較大小。

38

函數y=(lnx)/x在(0,e)上單調遞增,在(e,+無窮)上單調遞減。另外y=x(1/x)與該函數的單調性一致。

39

幾個數學易錯點:1,f`(x)<0是函數在定義域內單調遞減的充分不必要條件;2,在研究函數奇偶性時,忽略最開始的也是最重要的一步:考慮定義域是否關于原點對稱!;3,不等式的運用過程中,千萬要考慮"="號是否取到!4,研究數列問題不考慮分項,就是說有時第一項并不符合通項公式,所以應當極度注意:數列問題一定要考慮是否需要分項!

40

提高計算能力五步曲:1,扔掉計算器;2,仔細審題(提倡看題慢,解題快),要知道沒有看清楚題目,你算多少都沒用!;3,熟記常用數據,掌握一些速算技巧;4,加強心算,估算能力;5,[檢驗]!。

41

重要公式:已知三角形中AB=a,AC=b,O為三角形的外心,則向量AO×向量BC(即數量積)=(1/2)[b-a]強烈推薦!證明:過O作BC垂線,轉化到已知邊上

42

①函數單調性的含義:大多數同學都知道若函數在區間D上單調,則函數值隨著自變量的增大(減小)而增大(減小),但有些意思可能有些人還不是很清楚,若函數在D上單調,則函數必連續(分段函數另當別論)這也說明了為什么不能說y=tanx在定義域內單調遞增,因為它的圖像被無窮多條漸近線擋住,換而言之,不連續.還有,如果函數在D上單調,則函數在D上y與x一一對應.這個可以用來解一些方程.至于例子不舉了.

②函數周期性:這里主要總結一些函數方程式所要表達的周期設f(x)為R上的函數,對任意x∈R(1)f(a±x)=f(b±x)T=(b-a)(加絕對值,下同)(2)f(a±x)=-f(b±x)T=2(b-a)(3)f(x-a)+f(x+a)=f(x)T=6a(4)設T≠0,有f(x+T)=M[f(x)]其中M(x)滿足M[M(x)]=x,且M(x)≠x則函數的周期為2

③奇偶函數概念的推廣:

(1)對于函數f(x),若存在常數a,使得f(a-x)=f(a+x),則稱f(x)為廣義(Ⅰ)型偶函數,且當有兩個相異實數a,b滿足時,f(x)為周期函數T=2(b-a)

(2)若f(a-x)=-f(a+x),則f(x)是廣義(Ⅰ)型奇函數,當有兩個相異實數a,b滿足時,f(x)為周期函數T=2(b-a)

(3)有兩個實數a,b滿足廣義奇偶函數的方程式時,就稱f(x)是廣義(Ⅱ)型的奇,偶函數.且若f(x)是廣義(Ⅱ)型偶函數,那么當f在[a+b/2,∞)上為增函數時,有f(x1)<f(x2)等價于絕對值x1-(a+b p="" 2)<=""

④函數對稱性:

(1)若f(x)滿足f(a+x)+f(b-x)=c則函數關于(a+b/2,c/2)成中心對稱(2)若f(x)滿足f(a+x)=f(b-x)則函數關于直線x=a+b/2成軸對稱⑤柯西函數方程:若f(x)連續或單調(1)若f(xy)=f(x)+f(y)(x>0,y>0),則f(x)=㏒ax

(2)若f(xy)=f(x)f(y)(x>0,y>0),則f(x)=xu(u由初值給出)

(3)f(x+y)=f(x)f(y)則f(x)=ax

(4)若f(x+y)=f(x)+f(y)+kxy,則f(x)=ax2+bx(5)若f(x+y)+f(x-y)=2f(x),則f(x)=ax+b特別的若f(x)+f(y)=f(x+y),則f(x)=kx

43

與三角形有關的定理或結論中學數學平面幾何最基本的圖形就是三角形①正切定理(我自己取的,因為不知道名字):在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC②任意三角形射影定理(又稱第一余弦定理):在△ABC中a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA③任意三角形內切圓半徑r=2S/a+b+c(S為面積),外接圓半徑應該都知道了吧④梅涅勞斯定理:設A1,B1,C1分別是△ABC三邊BC,CA,AB所在直線的上的點,則A1,B1,C1共線的充要條件是CB1/B1A·BA1/A1C·AC1/C1B=1

44

易錯點:1,函數的各類性質綜合運用不靈活,比如奇偶性與單調性常用來配合解決抽象函數不等式問題;2,三角函數恒等變換不清楚,誘導公式不迅捷。

45,

易錯點:3,忽略三角函數中的有界性,三角形中角度的限定,比如一個三角形中,不可能同時出現兩個角的正切值為負;4,三角的平移變換不清晰,說明:由y=sinx變成y=sinwx的步驟是將橫坐標變成原來的1/∣w∣倍。

46

易錯點:5,數列求和中,常常使用的錯位相減總是粗心算錯,規避方法:在寫第二步時,提出公差,括號內等比數列求和,最后除掉系數;6,數列中常用變形公式不清楚,如:an=1/[n(n+2)]的求和保留四項。

47

易錯點:7,數列未考慮a1是否符合根據sn-sn-1求得的通項公式;8,數列并不是簡單的全體實數函數,即注意求導研究數列的最值問題過程中是否取到問題。

48

易錯點:9,向量的運算不完全等價于代數運算;10,在求向量的模運算過程中平方之后,忘記開方。比如這種選擇題中常常出現2,√2的答案…,基本就是選√2,選2的就是因為沒有開方;11,復數的幾何意義不清晰。

49

關于輔助角公式:asint+bcost=[√(a+b)]sin(t+m)其中tanm=b/a[條件:a>0]說明:一些的同學習慣去考慮sinm或者cosm來確定m,個人覺得這樣太容易出錯最好的方法是根據tanm確定m.(見上)。舉例說明:sinx+√3cosx=2sin(x+m),因為tanm=√3,所以m=60度,所以原式=2sin(x+60度)。

50

A、B為橢圓x/a+y/b=1上任意兩點。若OA垂直OB,則有1/∣OA∣+1/∣OB∣=1/a+1/b。

高中學好數學的方法

1.學數學要善于思考,自己想出來的答案遠比別人講出來的答案印象深刻。

2.課前要做好預習,這樣上數學課時才能把不會的知識點更好的消化吸收掉。

3.數學公式一定要記熟,并且還要會推導,能舉一反三。

4.學好數學最基礎的就是把課本知識點及課后習題都掌握好。

5.數學80%的分數來源于基礎知識,20%的分數屬于難點,所以考120分并不難。

6.數學需要沉下心去做,浮躁的人很難學好數學,踏踏實實做題才是硬道理。

7.數學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。

8.數學最主要的就是解題過程,懂得數學思維很關鍵,思路通了,數學自然就會了。

9.數學不是用來看的,而是用來算的,或許這一秒沒思路,當你拿起筆開始計算的那一秒,就豁然開朗了。

10.數學題目不會做,原因之一就是例題沒研究明白,所以數學書上的例題絕對不要放過。

高考數學復習備考策略

1、高考數學考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態,創設數學情境,進而醞釀數學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態準備應考。

2、高考數學做題時可以訓練自己的做題技巧,比如可以先易后難。就是先做簡單題,再做綜合題,應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

再先熟后生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對后者,不要驚慌失措,應想到數學試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之后,就可實施先熟后生的策略,即先做那些內容掌握比較到家、數學題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。

高考復習不要輕言放棄

對學習成績優秀的學生來說,備考的主要目的是以防萬一,保持穩定的心態,穩扎穩打地發揮自己的優秀水平。保持平時水平的表現就是成功。優秀的學生需要自我解壓。對優秀學生來說,高分段的競爭是非常激烈的,考生應注意發揮穩定,主要是做到情緒的穩和發揮的穩,不要出現意外的情緒。

對學習成績普通的學生來說,在最后的復習階段,查漏補弱,將不該失去的分找回來,扎實有效地提高考試成績。

中等學生和優秀生比,基礎相對不扎實。每次考試注意點應該放在失分點上,就像漁網一樣,撈到多少就是提高的分數,家長不要過分緊張分數的變化,扎實才能帶來飛躍。

對學習成績困難的學生來說,一定要以信心面對,不放棄,不拋棄,以頑強的勇氣堅持到最后。

105209 主站蜘蛛池模板: TMT观察网_独特视角观察TMT行业| 微波消解仪器_智能微波消解仪报价_高压微波消解仪厂家_那艾 | 河南档案架,档案密集架,手动密集架,河南密集架批发/报价 | 自清洗过滤器_全自动过滤器_全自动反冲洗过滤器_量子过滤器-滑漮滴 | 小型单室真空包装机,食品单室真空包装机-百科| 水平垂直燃烧试验仪-灼热丝试验仪-漏电起痕试验仪-针焰试验仪-塑料材料燃烧检测设备-IP防水试验机 | 开锐教育-学历提升-职称评定-职业资格培训-积分入户 | 九爱图纸|机械CAD图纸下载交流中心| 蓝莓施肥机,智能施肥机,自动施肥机,水肥一体化项目,水肥一体机厂家,小型施肥机,圣大节水,滴灌施工方案,山东圣大节水科技有限公司官网17864474793 | 华禹护栏|锌钢护栏_阳台护栏_护栏厂家-华禹专注阳台护栏、楼梯栏杆、百叶窗、空调架、基坑护栏、道路护栏等锌钢护栏产品的生产销售。 | app开发|app开发公司|小程序开发|物联网开发||北京网站制作|--前潮网络 | 南汇8424西瓜_南汇玉菇甜瓜-南汇水蜜桃价格 | 庭院灯_太阳能景观灯_草坪灯厂家_仿古壁灯-重庆恒投科技 | 石油/泥浆/不锈钢防腐/砂泵/抽砂泵/砂砾泵/吸砂泵/压滤机泵 - 专业石油环保专用泵厂家 | 德国EA可编程直流电源_电子负载,中国台湾固纬直流电源_交流电源-苏州展文电子科技有限公司 | 等离子空气净化器_医用空气消毒机_空气净化消毒机_中央家用新风系统厂家_利安达官网 | 宝宝药浴-产后药浴-药浴加盟-艾裕-专注母婴调养泡浴 | 超声波流量计_流量标准装置生产厂家 _河南盛天精密测控 | 佛山市钱丰金属不锈钢蜂窝板定制厂家|不锈钢装饰线条|不锈钢屏风| 电梯装饰板|不锈钢蜂窝板不锈钢工艺板材厂家佛山市钱丰金属制品有限公司 | 锥形螺带干燥机(新型耙式干燥机)百科-常州丰能干燥工程 | 精密五金冲压件_深圳五金冲压厂_钣金加工厂_五金模具加工-诚瑞丰科技股份有限公司 | 超声波破碎仪-均质乳化机(供应杭州,上海,北京,广州,深圳,成都等地)-上海沪析实业有限公司 | 气动机械手-搬运机械手-气动助力机械手-山东精瑞自动化设备有限公司 | 工业机械三维动画制作 环保设备原理三维演示动画 自动化装配产线三维动画制作公司-南京燃动数字 聚合氯化铝_喷雾聚氯化铝_聚合氯化铝铁厂家_郑州亿升化工有限公司 | 北京网站建设首页,做网站选【优站网】,专注北京网站建设,北京网站推广,天津网站建设,天津网站推广,小程序,手机APP的开发。 | 长沙中央空调维修,中央空调清洗维保,空气能热水工程,价格,公司就找维小保-湖南维小保环保科技有限公司 | 上海宿田自动化设备有限公司-双面/平面/单面贴标机 | 国际船舶网 - 船厂、船舶、造船、船舶设备、航运及海洋工程等相关行业综合信息平台 | 新疆十佳旅行社_新疆旅游报价_新疆自驾跟团游-新疆中西部国际旅行社 | 世纪豪门官网 世纪豪门集成吊顶加盟电话 世纪豪门售后电话 | 智慧农业|农业物联网|现代农业物联网-托普云农物联网官方网站 | 首页|成都尚玖保洁_家政保洁_开荒保洁_成都保洁 | 楼梯定制_楼梯设计施工厂家_楼梯扶手安装制作-北京凌步楼梯 | EDLC超级法拉电容器_LIC锂离子超级电容_超级电容模组_软包单体电容电池_轴向薄膜电力电容器_深圳佳名兴电容有限公司_JMX专注中高端品牌电容生产厂家 | 回转窑-水泥|石灰|冶金-巩义市瑞光金属制品有限责任公司 | 管形母线,全绝缘铜管母线厂家-山东佰特电气科技有限公司 | 深圳活动策划公司|庆典策划|专业公关活动策划|深圳艺典文化传媒 重庆中专|职高|技校招生-重庆中专招生网 | 百方网-百方电气网,电工电气行业专业的B2B电子商务平台 | 接地电阻测试仪[厂家直销]_电缆故障测试仪[精准定位]_耐压测试仪-武汉南电至诚电力设备 | 曙光腾达官网-天津脚手架租赁-木板架出租-移动门式脚手架租赁「免费搭设」 | 吉祥新世纪铝塑板_生产铝塑板厂家_铝塑板生产厂家_临沂市兴达铝塑装饰材料有限公司 |