高考數學考前必背知識點
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性質和主要結論:對稱性Cnm=Cnn-m二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)
所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇數項二項式系數的和=偶數項而是系數的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關問題。
高考數學必修知識點
線線平行常用方法
(1)定義:在同一平面內沒有公共點的兩條直線是平行直線。
(2)公理:在空間中平行于同一條直線的兩只直線互相平行。
(3)初中所學平面幾何中判斷直線平行的方法
(4)線面平行的性質:如果一條直線和一個平面平行,經過這條直線的平面和這個平面的相交,那么這條直線就和兩平面的交線平行。
(5)線面垂直的性質:如果兩直線同時垂直于同一平面,那么兩直線平行。
(6)面面平行的性質:若兩個平行平面同時與第三個平面相交,則它們的交線平行。
高考數學知識點
行列式運算法則
1、三角形行列式的值,等于對角線元素的乘積。計算時,一般需要多次運算來把行列式轉換為上三角型或下三角型。
2、交換行列式中的兩行(列),行列式變號。
3、行列式中某行(列)的公因子,可以提出放到行列式之外。
4、行列式的某行乘以a,加到另外一行,行列式不變,常用于消去某些元素。
5、若行列式中,兩行(列)完全一樣,則行列式為0;可以推論,如果兩行(列)成比例,行列式為0。
6、行列式展開:行列式的值,等于其中某一行(列)的每個元素與其代數余子式乘積的和;但若是另一行(列)的元素與本行(列)的代數余子式乘積求和,則其和為0。
7、在求解代數余子式相關問題時,可以對行列式進行值替代。
8、克拉默法則:利用線性方程組的系數行列式求解方程。
9、齊次線性方程組:在線性方程組等式右側的常數項全部為0時,該方程組稱為齊次線性方程組,否則為非齊次線性方程組。齊次線性方程組一定有零解,但不一定有非零解。當D=0時,有非零解;當D!=0時,方程組無非零解。
高考數學知識點梳理
直角三角形的面積求法
直角三角形面積常用公式S=1/2ab(公式中a,b分別為直角三角形的兩直角邊長)。直角三角形是一個幾何圖形,是有一個角為直角的三角形,有普通的直角三角形和等腰直角三角形兩種。其符合勾股定理,具有一些特殊性質和判定方法。
三角形面積公式是指使用算式計算出三角形的面積,同一平面內,且不在同一直線的三條線段首尾順次相接所組成的封閉圖形叫做三角形,符號為△。它除了具有一般三角形的性質外,具有一些特殊的性質:
1、直角三角形兩直角邊的平方和等于斜邊的平方。
2、在直角三角形中,兩個銳角互余。
3、直角三角形中,斜邊上的中線等于斜邊的一半(即直角三角形的外心位于斜邊的中點,外接圓半徑R=C/2)。該性質稱為直角三角形斜邊中線定理。
4、直角三角形的兩直角邊的乘積等于斜邊與斜邊上高的乘積。
高考數學知識點歸納
輾轉相除法
1.輾轉相除法是用于求公約數的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法
2.所謂輾轉相法,就是對于給定的兩個數,用較大的數除以較小的數.若余數不為零,則將較小的數和余數構成新的一對數,繼續上面的除法,直到大數被小數除盡,則這時的除數就是原來兩個數的公約數
3.更相減損術是一種求兩數公約數的方法,其基本過程是:對于給定的兩數,用較大的數減去較小的數,接著把所得的差與較小的數比較,并以大數減小數,繼續這個操作,直到所得的數相等為止,則這個數就是所求的公約數
4.秦九韶算法是一種用于計算一元二次多項式的值的方法
5.常用的排序方法是直接插入排序和冒泡排序
6.進位制是人們為了計數和運算方便而約定的記數系統.“滿進一”,就是k進制,進制的基數是k
7.將進制的數化為十進制數的方法是:先將進制數寫成用各位上的數字與k的冪的乘積之和的形式,再按照十進制數的運算規則計算出結果
8.將十進制數化為進制數的方法是:除k取余法.即用k連續去除該十進制數或所得的商,直到商為零為止,然后把每次所得的余數倒著排成一個數就是相應的進制數