雙曲線的相關知識點
雙曲線的相關知識點總結
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
3、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對于任意實數λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
雙曲線的定義
(1)平面內,到兩個定點的距離之差的絕對值為常數(小于這兩個定點間的距離)的點的軌跡稱為雙曲線。定點叫雙曲線的焦點。
(2)平面內,到給定一點及一直線的距離之比為常數e(e=c/a(e>1),即為雙曲線的離心率)的點的軌跡稱為雙曲線。定點叫雙曲線的焦點,定直線叫雙曲線的準線。雙曲線準線的方程為x=±a?/c(焦點在x軸上)或y=±a?/c(焦點在y軸上)。
(3)一平面截一圓錐面,當截面與圓錐面的母線不平行,且與圓錐面的兩個圓錐都相交時,交線稱為雙曲線。
(4)在平面直角坐標系中,二元二次方程F(x,y)=ax2+bxy+cy2+dx+ey+f=0滿足以下條件時,其圖像為雙曲線。(a、b、c不都是零,b2-4ac>0)
雙曲線的標準方程
標準方程1:焦點在X軸上時為x2/a2-y2/b2=1(a>0,b>0)
標準方程1:焦點在Y軸上時為y2/a2-x2/b2=1(a>0,b>0)
雙曲線取值范圍:│x│≥a(焦點在x軸上)或者│y│≥a(焦點在y軸上)
雙曲線對稱性:關于坐標軸和原點對稱,其中關于原點成中心對稱。
1、雙曲線頂點
A(-a,0),A'(a,0)。同時 AA'叫做雙曲線的實軸且│AA'│=2a。
B(0,-b),B'(0,b)。同時 BB'叫做雙曲線的虛軸且│BB'│=2b。
F1(-c,0)或(0,-c),F2(c,0)或(0,c)。F1為雙曲線的左焦點,F2為雙曲線的右焦點且│F1F2│=2c
對實軸、虛軸、焦點有:a2+b2=c2
2、雙曲線離心率
第一定義:e=c/a 且e∈(1,+∞)
第二定義:雙曲線上的一點P到定點F的距離│PF│與點P到定直線(相應準線)的距離d 的比等于雙曲線的離心率e。
d點│PF│/d線(點P到定直線(相應準線)的距離)=e
3、雙曲線的準線
焦點在x軸上:x=±a2/c
焦點在y軸上:y=±a2/c
雙曲線的性
1、取值區域:
x≥a,x≤-a或者y≥a,y≤-a
2、對稱性:
關于坐標軸和原點對稱。
3、頂點:
A(-a,0)A’(a,0)AA’叫做雙曲線的實軸,長2a;B(0,-b)B’(0,b)BB’叫做雙曲線的虛軸,長2b。
4、漸近線:
橫軸:y=±(b/a)x豎軸:y=±(a/b)x
5、離心率:
e=c/a取值范圍:(1,+∞)
6、雙曲線上的一點到定點的距離和到定直線(相應準線)的距離的比等于雙曲線的離心率。
7、雙曲線焦半徑公式:
圓錐曲線上任意一點到焦點距離。過右焦點的半徑r=|ex-a|;過左焦點的半徑r=|ex+a|
8、等軸雙曲線
雙曲線的實軸與虛軸長相等,2a=2b e=√2
9、共軛雙曲線
(x^2/a^2)-(y^2/b^2)=1與(y^2/b^2)-(x^2/a^2)=1叫共軛雙曲線
(1)共漸近線
(2)e1+e2>=2√2
10、準線:
x=±a^2/c,或者y=±a^2/c
質
雙曲線的焦距是什么
一般的,雙曲線(希臘語“?περβολ?”,字面意思是“超過”或“超出”)是定義為平面交截直角圓錐面的兩半的一類圓錐曲線。
它還可以定義為與兩個固定的點(叫做焦點)的距離差是常數的點的軌跡。這個固定的距離差是a的兩倍,這里的a是從雙曲線的中心到雙曲線最近的分支的頂點的距離。a還叫做雙曲線的實半軸。焦點位于貫穿軸上,它們的中間點叫做中心,中心一般位于原點處。
在數學中,雙曲線(多重雙曲線或雙曲線)是位于平面中的一種平滑曲線,由其幾何特性或其解決方案組合的方程定義。雙曲線有兩片,稱為連接的組件或分支,它們是彼此的鏡像,類似于兩個無限弓。
雙曲線是由平面和雙錐相交形成的三種圓錐截面之一。(其他圓錐部分是拋物線和橢圓,圓是橢圓的特殊情況)如果平面與雙錐的兩半相交,但不通過錐體的頂點,則圓錐曲線是雙曲線。