新高考高考數(shù)學(xué)押題大題
數(shù)學(xué)在高考中是占有非常大的分?jǐn)?shù)比重的,那么新高考高考數(shù)學(xué)押題大題有哪些呢?下面小編為大家?guī)硇赂呖几呖紨?shù)學(xué)押題大題,歡迎大家參考閱讀,希望能夠幫助到大家!
新高考高考數(shù)學(xué)押題大題
一、選擇題
1.在△ABC中,sinA=sinB,則△ABC是()
A.直角三角形B.銳角三角形
C.鈍角三角形D.等腰三角形
答案D
2.在△ABC中,若acosA=bcosB=ccosC,則△ABC是()
A.直角三角形B.等邊三角形
C.鈍角三角形D.等腰直角三角形
答案B
解析由正弦定理知:sinAcosA=sinBcosB=sinCcosC,
∴tanA=tanB=tanC,∴A=B=C.
3.在△ABC中,sinA=34,a=10,則邊長(zhǎng)c的取值范圍是()
A.152,+∞B.(10,+∞)
C.(0,10)D.0,403
答案D
解析∵csinC=asinA=403,∴c=403sinC.
∴0
4.在△ABC中,a=2bcosC,則這個(gè)三角形一定是()
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形
答案A
解析由a=2bcosC得,sinA=2sinBcosC,
∴sin(B+C)=2sinBcosC,
∴sinBcosC+cosBsinC=2sinBcosC,
∴sin(B-C)=0,∴B=C.
5.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,則sinA∶sinB∶sinC等于()
A.6∶5∶4B.7∶5∶3
C.3∶5∶7D.4∶5∶6
答案B
解析∵(b+c)∶(c+a)∶(a+b)=4∶5∶6,
∴b+c4=c+a5=a+b6.
令b+c4=c+a5=a+b6=k(k>0),
則b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.
∴sinA∶sinB∶sinC=a∶b∶c=7∶5∶3.
6.已知三角形面積為14,外接圓面積為π,則這個(gè)三角形的三邊之積為()
A.1B.2
C.12D.4
答案A
解析設(shè)三角形外接圓半徑為R,則由πR2=π,
得R=1,由S△=12absinC=abc4R=abc4=14,∴abc=1.
二、填空題
7.在△ABC中,已知a=32,cosC=13,S△ABC=43,則b=________.
答案23
解析∵cosC=13,∴sinC=223,
∴12absinC=43,∴b=23.
8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知A=60°,a=3,b=1,則c=________.
答案2
解析由正弦定理asinA=bsinB,得3sin60°=1sinB,
∴sinB=12,故B=30°或150°.由a>b,
得A>B,∴B=30°,故C=90°,
由勾股定理得c=2.
9.在單位圓上有三點(diǎn)A,B,C,設(shè)△ABC三邊長(zhǎng)分別為a,b,c,則asinA+b2sinB+2csinC=________.
答案7
解析∵△ABC的外接圓直徑為2R=2,
∴asinA=bsinB=csinC=2R=2,
∴asinA+b2sinB+2csinC=2+1+4=7.
10.在△ABC中,A=60°,a=63,b=12,S△ABC=183,則a+b+csinA+sinB+sinC=________,c=________.
答案126
解析a+b+csinA+sinB+sinC=asinA=6332=12.
∵S△ABC=12absinC=12×63×12sinC=183,
∴sinC=12,∴csinC=asinA=12,∴c=6.
三、解答題
11.在△ABC中,求證:a-ccosBb-ccosA=sinBsinA.
證明因?yàn)樵凇鰽BC中,asinA=bsinB=csinC=2R,
所以左邊=2RsinA-2RsinCcosB2RsinB-2RsinCcosA
=sin(B+C)-sinCcosBsin(A+C)-sinCcosA=sinBcosCsinAcosC=sinBsinA=右邊.
所以等式成立,即a-ccosBb-ccosA=sinBsinA.
12.在△ABC中,已知a2tanB=b2tanA,試判斷△ABC的形狀.
解設(shè)三角形外接圓半徑為R,則a2tanB=b2tanA
a2sinBcosB=b2sinAcosA
4R2sin2AsinBcosB=4R2sin2BsinAcosA
sinAcosA=sinBcosB
sin2A=sin2B
2A=2B或2A+2B=π
A=B或A+B=π2.
∴△ABC為等腰三角形或直角三角形.
能力提升
13.在△ABC中,B=60°,邊與最小邊之比為(3+1)∶2,則角為()
A.45°B.60°C.75°D.90°
答案C
解析設(shè)C為角,則A為最小角,則A+C=120°,
∴sinCsinA=sin120°-AsinA
=sin120°cosA-cos120°sinAsinA
=32tanA+12=3+12=32+12,
∴tanA=1,A=45°,C=75°.
14.在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,若a=2,C=π4,
cosB2=255,求△ABC的面積S.
解cosB=2cos2B2-1=35,
故B為銳角,sinB=45.
所以sinA=sin(π-B-C)=sin3π4-B=7210.
由正弦定理得c=asinCsinA=107,
所以S△ABC=12acsinB=12×2×107×45=87.
1.在△ABC中,有以下結(jié)論:
(1)A+B+C=π;
(2)sin(A+B)=sinC,cos(A+B)=-cosC;
(3)A+B2+C2=π2;
(4)sinA+B2=cosC2,cosA+B2=sinC2,tanA+B2=1tanC2.
2.借助正弦定理可以進(jìn)行三角形中邊角關(guān)系的互化,從而進(jìn)行三角形形狀的判斷、三角恒等式的證明.
高考數(shù)學(xué)主要知識(shí)點(diǎn)
第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。
第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。針對(duì)數(shù)學(xué)高考強(qiáng)調(diào)對(duì)基礎(chǔ)知識(shí)與基本技能的考查我們一定要全面、系統(tǒng)地復(fù)習(xí)高中數(shù)學(xué)的基礎(chǔ)知識(shí),正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應(yīng)萬變。
高考數(shù)學(xué)高分學(xué)習(xí)方法
1、先看筆記后做作業(yè)。 有的高中學(xué)生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對(duì)教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時(shí),作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對(duì)比消化。如果自己又不注意對(duì)此落實(shí),天長(zhǎng)日久,就會(huì)造成極大損失。
2、做題之后加強(qiáng)反思。 學(xué)生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問題成串,日久天長(zhǎng),構(gòu)建起一個(gè)內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。
3、主動(dòng)復(fù)習(xí)總結(jié)提高。 進(jìn)行章節(jié)總結(jié)是非常重要的。初中時(shí)是教師替學(xué)生做總結(jié),做得細(xì)致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時(shí)間,也沒有明確指出做總結(jié)的時(shí)間。
4、積累資料隨時(shí)整理。 要注意積累復(fù)習(xí)資料。把課堂筆記,練習(xí),單元測(cè)試,各種試卷,都分門別類按時(shí)間順序整理好。每讀一次,就在上面標(biāo)記出自己下次閱讀時(shí)的重點(diǎn)內(nèi)容。這樣,復(fù)習(xí)資料才能越讀越精,一目了然。
5、精挑慎選課外讀物。 初中學(xué)生學(xué)數(shù)學(xué),如果不注意看課外讀物,一般地說,不會(huì)有什么影響。高中則不大相同。高中數(shù)學(xué)考的是學(xué)生解決新題的能力。作為一名高中生,如果只是圍著自己的老師轉(zhuǎn),不論老師的水平有多高,必然都會(huì)存在著很大的局限性。因此,要想學(xué)好數(shù)學(xué),必須打開一扇門,看看外面的世界。當(dāng)然,也不要自立門戶,另起爐灶。一旦脫離校內(nèi)教學(xué)和自己的老師的教學(xué)體系,也必將事半功倍。
高考數(shù)學(xué)答題有什么策略
1.調(diào)適心理,增強(qiáng)信心
(1)合理設(shè)置考試目標(biāo),創(chuàng)設(shè)寬松的應(yīng)考氛圍,以平常心對(duì)待高考;
(2)合理安排飲食,提高睡眠質(zhì)量;
(3)保持良好的備考狀態(tài),不斷進(jìn)行積極的心理暗示;
(4)靜能生慧,穩(wěn)定情緒,凈化心靈,滿懷信心地迎接即將到來的考試。
2.悉心準(zhǔn)備,不紊不亂
(1)重點(diǎn)復(fù)習(xí),查缺補(bǔ)漏。對(duì)前幾次模擬考試的試題分類梳理、整合,既可按知識(shí)分類,也可按數(shù)學(xué)思想方法分類。強(qiáng)化聯(lián)系,形成知識(shí)網(wǎng)絡(luò)結(jié)構(gòu),以少勝多,以不變應(yīng)萬變。
(2)查找錯(cuò)題,分析病因,對(duì)癥下藥,這是重點(diǎn)工作。
(3)閱讀《考試說明》和《試題分析》,確保沒有知識(shí)盲點(diǎn)。
(4)回歸課本,回歸基礎(chǔ),回歸近年高考試題,把握通性通法。
(5)重視書寫表達(dá)的規(guī)范性和簡(jiǎn)潔性,掌握各類常見題型的表達(dá)模式,避免“會(huì)而不對(duì),對(duì)而不全”現(xiàn)象的出現(xiàn)。
(6)臨考前應(yīng)做一定量的中、低檔題,以達(dá)到熟悉基本方法、典型問題的目的,一般不再做難題,要保持清醒的頭腦和良好的競(jìng)技狀態(tài)。
3.入場(chǎng)臨戰(zhàn),通覽全卷
最容易導(dǎo)致心理緊張、焦慮和恐懼的是入場(chǎng)后與答卷前的“臨戰(zhàn)”階段,此時(shí)保持心態(tài)平穩(wěn)是非常重要的。剛拿到試卷,一般心情比較緊張,不要匆忙作答,可先通覽全卷,盡量從卷面上獲取最多的信息,為實(shí)施正確的解題策略作鋪墊,一般可在五分鐘之內(nèi)做完下面幾件事:
(1)填寫好全部考生信息,檢查試卷有無問題;
(2)調(diào)節(jié)情緒,盡快進(jìn)入考試狀態(tài),可解答那些一眼就能看得出結(jié)論的簡(jiǎn)單選擇或填空題(一旦解出,信心倍增,情緒立即穩(wěn)定);
(3)對(duì)于不能立即作答的題目,可一邊通覽,一邊粗略地分為a、b兩類:a類指題型比較熟悉、容易上手的題目;b類指題型比較陌生、自我感覺有困難的題目,做到心中有數(shù)。
高考數(shù)學(xué)答題竅門
1、審題要慢,答題要快
有些考生只知道一味求快,往往題意未清,便匆忙動(dòng)筆,結(jié)果誤入歧途,即所謂欲速則不達(dá),看錯(cuò)一個(gè)字可能會(huì)遺憾終生,所以審題一定要慢,有了這個(gè)“慢”,才能形成完整的合理的解題策略,才有答題的“快”。
2、運(yùn)算要準(zhǔn),膽子要大
高考沒有足夠的時(shí)間讓你反復(fù)驗(yàn)算,更不容你一再地變換解題方法,往往是拿到一個(gè)題目,憑感覺選定一種方法就動(dòng)手做,這時(shí)除了你的每一步運(yùn)算務(wù)求正確外,還要求把你當(dāng)時(shí)的解法堅(jiān)持到底,也許你選擇的不是最好的方法,但如回頭重來將會(huì)花費(fèi)更多的時(shí)間,當(dāng)然堅(jiān)持到底并不意味著鉆牛角尖,一旦發(fā)現(xiàn)自己走進(jìn)死胡同,還是要立刻迷途知返。
3、先易后難,敢于放棄
能夠增強(qiáng)信心,使思維趨向,對(duì)發(fā)揮水平極為有利;另一方面如果先做難題,可能會(huì)浪費(fèi)好多時(shí)間,即使難關(guān)被攻克,卻已沒有時(shí)間去得那些易得的分?jǐn)?shù),所以關(guān)鍵時(shí)刻,敢于放棄,也是一種明智的選擇。有些解答題第一問就很難,這時(shí)可以先放棄第一問,而直接使用第一問的結(jié)論解決第2問、第3問。
4、先熟后生,合理用時(shí)
面對(duì)熟悉的題目,自然象吃了定心丸,做起來得心應(yīng)手,會(huì)使你獲得好心情,并且可以在最短時(shí)間內(nèi)完成,留下更多的時(shí)間來思考那些不熟悉的題目。有些題目需花很多時(shí)間卻只得到很少分?jǐn)?shù),有些題目只要花很少時(shí)間卻有很高的分值。所以應(yīng)先把時(shí)間用在那些較易題或分值較高題目上,最大限度地提高時(shí)間的利用率。