2023年全國高考乙卷數學真題試題
高考數學復習重點
第一,函數與導數
主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
第二,平面向量與三角函數、三角變換及其應用
這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
第三,數列及其應用
這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統計
這部分和我們的生活聯系比較大,屬應用題。
第六,空間位置關系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
第七,解析幾何
高考的難點,運算量大,一般含參數。
高考數學考前復習注意事項
1、要有針對性地做題,典型的題目,應該規范地完成,同時還應了解自己,有選擇地做一些課外的題。
2、要循序漸進,由易到難,要對做過了典型題目有一定的體會和變通,即按“學、練、思、結”程序對待典型的問題,這樣做能起到事半功倍的效果。
3、是無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學好數學的重要問題。
4、獨立思考是數學的靈魂,遇到不懂或困難的問題時,要堅持獨立思考,不輕易問人,不要一遇到不會的東西就馬上去問別人,自己不動腦子,專門依賴別人,而是要自己先認真地思考一下,依靠自己的努力克服其中的某些困難,經過很大的努力仍不能解決的問題,再虛心請教別人,請教時,不要把問題問得太透。學會提出問題,提出問題往往比解決問題更難,而且也更重要。
高考數學解答題技巧
1、三角變換與三角函數的性質問題
解題方法:①不同角化同角;②降冪擴角 ;③化f(x)=Asin(ωx+φ)+h ;④結合性質求解。
答題步驟:
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
2、解三角形問題
解題方法:
(1) ①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
答題步驟:
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
3、數列的通項、求和問題
解題方法:①先求某一項,或者找到數列的關系式;②求通項公式;③求數列和通式。
答題步驟:
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
4、離散型隨機變量的均值與方差
解題思路:
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
答題步驟:
①定元:根據已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
5、圓錐曲線中的范圍問題
解題思路;①設方程;②解系數;③得結論。
答題步驟:
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變量表示目標變量,代入不等關系式。
③得范圍:通過求解含目標變量的不等式,得所求參數的范圍。
6、解析幾何中的探索性問題
解題思路:①一般先假設這種情況成立(點存在、直線存在、位置關系存在等);②將上面的假設代入已知條件求解;③得出結論。
答題步驟:
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果,經驗證成立則肯。 定假設;若推出矛盾則否定假設。