高中數學反三角函數和三角函數的關系
反三角函數是一種數學術語,它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x這些函數的統稱,各自表示其正弦、余弦、正切、余切為x的角。
而三角函數是以角度為自變量,角度對應任意角終邊與單位圓交點坐標或其比值為因變量的函數。常見的三角函數包括正弦函數、余弦函數和正切函數。
反三角函數主要是三個:
反正弦函數:是正弦函數y=sin x在[-π/2,π/2]上的反函數,arcsin x表示一個正弦值為x的角,該角的范圍在[-π/2,π/2]區間內。
反余弦函數:是余弦函數y=cos x在[0,π]上的反函數,arccos x表示一個余弦值為x的角,該角的范圍在[0,π]區間內。
反正切函數:是正切函數y=tan x在(-π/2,π/2)上的反函數,arctan x表示一個正切值為x的角,該角的范圍在(-π/2,π/2)區間內。
反三角函數計算公式
cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
當 x∈[-π/2,π/2] 有arcsin(sinx)=x
x∈[0,π], arccos(cosx)=x
x∈(-π/2,π/2), arctan(tanx)=x
x∈(0,π), arccot(cotx)=x
x>0,arctanx=π/2-arctan1/x,arccotx類似
若 (arctanx+arctany)∈(-π/2,π/2),則 arctanx+arctany=arctan((x+y)/(1-xy))
高三數學的學習方法
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會準確。
高中數學復習方法
一、分類記憶法
遇到數學公式較多,一時難于記憶時,可以將這些公式適當分組。例如求導公式有18個,就可以分成四組來記:(1)常數與冪函數的導數(2個);(2)指數與對數函數的導數(4個);(3)三角函數的導數(6個);(4)反三角函數的導數(6個)。求導法則有7個,可分為兩組來記:(1)和、差、積、商復合函數的導數(4個);(2)反函數、隱函數、冪指數函數的導數(3個)。
二、推理記憶法
許多數學知識之間邏輯關系比較明顯,要記住這些知識,只需記憶一個,而其余可利用推理得到,這種記憶稱為推理記憶。例如,平行四邊形的性質,我們只要記住它的定義,由定義推理得它的任一對角線把它平分成兩個全等三角形,繼而又推得它的對邊相等,對角相等,相鄰角互補,兩條對角線互相平分等性質。
三、標志記憶法
在學習某一章節知識時,先看一遍,對于重要部分用彩筆在下面畫上波浪線,再記憶時,就不需要將整個章節的內容從頭到尾逐字逐句的看了,只要看劃重點的地方并在它的啟示下就能記住本章節主要內容,這種記憶稱為標志記憶。
四、回想記憶法
在重復記憶某一章節的知識時,不看具體內容,而是通過大腦回想達到重復記憶的目的,這種記憶稱為回想記憶。在實際記憶時,回想記憶法與標志記憶法是配合使用的。
高考數學的復習攻略
1、要將“以老師為中心”轉變為“以自己為主體,老師為主導”的學習模式。
數學不是靠老師教會的,而是在老師引導下,靠自己主動思維活動去獲取的,學習數學就是要積極主動地參與教學過程,并經常發現和提出問題,而不能依著老師的慣性運轉,被動地接受所學知識和方法。
2、要養成良好的預習習慣,提高自學能力。
數學課前預習而“生疑”,“帶疑”聽課而“感疑”,通過老師的點撥、講解而“悟疑”、“解疑”,從而提高課堂聽課效果。預習也叫課前自學,預習的越充分,聽課效果就越好;聽課效果越好,就能更好地預習下節內容,從而形成良性循環。
3、要養成良好的審題習慣,提高閱讀能力。
審題是解題的關鍵,數學題是由文字語言、符號語言和圖形語言構成的,拿到目要“寧停三分”,“不搶一秒”,要在已有知識和解題經驗基礎上,譯字逐句仔細審題,細心推敲,切忌題意不清,倉促上陣,審數學題有時須對題意逐句“翻譯”,將隱含條件轉化為明顯條件,尋找突破點,從而形成解題思路。