高中數(shù)學(xué)函數(shù)的值域與最值知識(shí)點(diǎn)
高中數(shù)學(xué)函數(shù)的值域與最值知識(shí)點(diǎn)
1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱(chēng)觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的.性質(zhì),直接觀察得出函數(shù)的值域。
(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元。
(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。
(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧。
(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。
(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域。
(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域。
2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值。因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異。
如函數(shù)的值域是(0,16],最大值是16,無(wú)最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無(wú)最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2。可見(jiàn)定義域?qū)瘮?shù)的值域或最值的影響。
3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用
函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問(wèn)題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值。
函數(shù)的值域
1求函數(shù)值域的方法
①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的復(fù)合函數(shù);
②換元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;
③判別式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;
④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時(shí)要畫(huà)圖);
⑤單調(diào)性法:利用函數(shù)的單調(diào)性求值域;
⑥圖象法:二次函數(shù)必畫(huà)草圖求其值域;
⑦利用對(duì)號(hào)函數(shù)
⑧幾何意義法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對(duì)值函數(shù)
高中數(shù)學(xué)學(xué)習(xí)方法匯總
1.不少同學(xué)都會(huì)有個(gè)相同的錯(cuò)誤,就是在老師講課的時(shí)候,拼命的做筆記,做計(jì)算。這都是徒勞或者是低效的。最有效的是拋開(kāi)一切,認(rèn)真理解老師的解題思路,千萬(wàn)不要糾結(jié)某個(gè)計(jì)算結(jié)果或者是某個(gè)環(huán)節(jié),你所要理解的是,一道題如何一環(huán)環(huán)的解開(kāi)和每一個(gè)環(huán)節(jié)的原理。
2.要學(xué)好高中數(shù)學(xué),最主要的是自己做題,千萬(wàn)不可依賴(lài)?yán)蠋熁蛘咄瑢W(xué),不提倡題海戰(zhàn)術(shù),因?yàn)樽鲆坏佬骂}要比你做一百道同樣的題強(qiáng)很多。每做完一道題,要總結(jié)出解題的思路方法。
3.整個(gè)高中最難的一塊就是函數(shù),而函數(shù)又恰巧學(xué)在前面,導(dǎo)致很多學(xué)生受挫。函數(shù)一塊的話(huà),可以先了解一下函數(shù)圖象的一塊,借助圖象來(lái)解函數(shù)問(wèn)題,非常方便。
4.看書(shū)能明白,聽(tīng)老師講題覺(jué)得很簡(jiǎn)單,但一到自己做,就不會(huì)了。這是一個(gè)通病。主要原因不是因?yàn)楦咧械臄?shù)學(xué)有多難,而是思維沒(méi)有轉(zhuǎn)變過(guò)來(lái)。初中的題一般比較簡(jiǎn)單,所以死記解題方法都可以,但是高中數(shù)學(xué)就不行了。
高中數(shù)學(xué)相對(duì)初中數(shù)學(xué)特點(diǎn)
1.教材內(nèi)容方面:
高中數(shù)學(xué)教材,較多研究的是變量和集合,不但注重定量計(jì)算,且需作定性研究。即:內(nèi)容多、抽象性、理論性強(qiáng)。
2.教學(xué)方法方面:
高中教師在處理高中教材時(shí)沒(méi)有充裕的時(shí)間去反復(fù)強(qiáng)調(diào)教材內(nèi)容,他們?cè)诮虒W(xué)中,不僅要對(duì)教材中的概念、公式、定理和法則加以認(rèn)真講解,還要重視學(xué)生各種能力的培養(yǎng)。對(duì)習(xí)慣于“依樣畫(huà)葫蘆”缺乏“舉一反三”能力的高一學(xué)生,顯然不能維持原有的學(xué)習(xí)方法。
3.學(xué)習(xí)方法方面:
進(jìn)入高中后,則要求學(xué)生勤于思考、勇于鉆研、善于觸類(lèi)旁通、舉一反三、歸納探索規(guī)律。
4.課程要求方面:
由于高中數(shù)學(xué)內(nèi)容難度增大,數(shù)學(xué)知識(shí)的應(yīng)用增加,要求學(xué)生會(huì)使用文字、符號(hào)和圖形等數(shù)學(xué)語(yǔ)言表達(dá)問(wèn)題進(jìn)行交流,對(duì)能力提出更高的要求。
高中數(shù)學(xué)學(xué)習(xí)方法
課前預(yù)習(xí)
一個(gè)老生常談的話(huà)題,也是提到學(xué)習(xí)方法必將的一個(gè),話(huà)雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預(yù)習(xí)的能有幾人,課前預(yù)習(xí)可以使我們提前了解將要學(xué)習(xí)的知識(shí),不至于到課上手足無(wú)措,加深我們聽(tīng)課時(shí)的理解,從而能夠很快的吸收新知識(shí)。
記筆記
這里主要指的是課堂筆記,因?yàn)槊抗?jié)課的時(shí)間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來(lái),一來(lái)可以加深我們的理解,好記性不如爛筆頭嗎,二來(lái)可以方便我們以后復(fù)習(xí)查看。如果對(duì)課堂講述的知識(shí)不理解的同學(xué)更應(yīng)該做筆記,以便課下細(xì)細(xì)琢磨,直到理解為止。
課后復(fù)習(xí)
同預(yù)習(xí)一樣,是個(gè)老生常談的話(huà)題,但也是行之有效的方法,課堂的幾十分鐘不足以使我們學(xué)習(xí)和消化所學(xué)知識(shí),需要我們?cè)谡n下進(jìn)行大量的練習(xí)與鞏固,才能真正掌握所學(xué)知識(shí)。
涉獵課外習(xí)題
想要在數(shù)學(xué)中有所建樹(shù),取得好成績(jī),光靠課本上的知識(shí)是遠(yuǎn)遠(yuǎn)不夠的,因此我們需要多多涉獵一些課外習(xí)題,學(xué)習(xí)它們的解題思路和方法,如果實(shí)在不能理解,可以問(wèn)問(wèn)老師或者同學(xué)。
學(xué)會(huì)歸類(lèi)總結(jié)
學(xué)習(xí)數(shù)學(xué)要記得東西很多,尤其是數(shù)學(xué)公式,而且知識(shí)還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個(gè)公式,不但增加記憶量,而且容易忘,此時(shí)我們必須學(xué)會(huì)歸類(lèi)總結(jié),把經(jīng)常搭配使用的公式等總結(jié)在一起記憶,這樣會(huì)大大的減少我們的記憶量,同時(shí)提高我們做題效率。
建立糾錯(cuò)本
我們?cè)趯W(xué)習(xí)數(shù)學(xué)的時(shí)候可能會(huì)經(jīng)常因?yàn)橥瑯右活?lèi)題目而失分,自己也十分懊惱,其實(shí)有辦法可以解決這個(gè)問(wèn)題,就是建立糾錯(cuò)本,幫我們經(jīng)常會(huì)出錯(cuò)的題目都集中在一起(當(dāng)然只要是做錯(cuò)過(guò)得都可以記錄上),然后空閑的時(shí)候看看,考試之前再看看,這樣考試的時(shí)候出現(xiàn)同類(lèi)題目再出錯(cuò)的幾率就降低好多。
寫(xiě)考試總結(jié)
寫(xiě)考試總結(jié)是一個(gè)好習(xí)慣,考試總結(jié)可以幫我們找出學(xué)習(xí)之中不足之處,以及我們知識(shí)的薄弱環(huán)節(jié),從而及時(shí)的彌補(bǔ)不足,以及以后的學(xué)習(xí)方向。