等比數列求和公式
q≠1時 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1時Sn=na1
(a1為首項,an為第n項,d為公差,q 為等比)
這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0),等比數列a1≠ 0。注:q=1 時,{an}為常數列。利用等比數列求和公式可以快速的計算出該數列的和。
等比數列求和公式推導
由等比數列定義
a2=a1xq
a3=a2xq
a(n-1)=a(n-2)xq
an=a(n-1)xq 共n-1個等式兩邊分別相加得
a2+a3+...+an=[a1+a2+...+a(n-1)]xq
即Sn-a1=(Sn-an)xq,即(1-q)Sn=a1-anxq
當q≠1時,Sn=(a1-anxq)/(1-q)(n≥2)
當n=1時也成立.
當q=1時Sn=nxa1
所以Sn=nxa1(q=1);(a1-anxq)/(1-q)(q≠1)。
錯位相減法
Sn=a1+a2+a3+...+an
Snxq=a1xq+a2xq+...+a(n-1)xq+anxq=a2+a3+...+an+anxq
以上兩式相減得(1-q)xSn=a1-anxq
數學歸納法
證明:(1)當n=1時,左邊=a1,右邊=a1·q0=a1,等式成立;
(2)假設當n=k(k≥1,k∈Nx)時,等式成立,即ak=a1qk-1;
當n=k+1時,ak+1=ak·q=a1qk=a1·q(k+1)-1;
這就是說,當n=k+1時,等式也成立;
等比數列的性質
①若 m、n、p、q∈Nx,且m+n=p+q,則amxan=apxaq;
②在等比數列中,依次每 k項之和仍成等比數列.
“G是a、b的等比中項”“G^2=ab(G≠0)”.
③若(an)是等比數列,公比為q1,(bn)也是等比數列,公比是q2,則
(a2n),(a3n)…是等比數列,公比為q1^2,q1^3…
(can),c是常數,(anxbn),(an/bn)是等比數列,公比為q1,q1q2,q1/q2。
(5) 等比數列前n項之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比數列中,首項A1與公比q都不為零.
注意:上述公式中A^n表示A的n次方。
(6)由于首項為a1,公比為q的等比數列的通向公式可以寫成anxq/a1=q^n,它的指數函數y=a^x有著密切的聯系,從而可以利用指數函數的性質來研究等比數列
由(1)(2)可以判斷,等式對一切n∈Nx都成立。
高中數學重點公式大全
1、一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數的關系x1+x2=-b/ax1xx2=c/a注:韋達定理
判別式b2-4a=0注:方程有相等的兩實根
b2-4ac>0注:方程有兩個不相等的個實根
b2-4ac<0注:方程有共軛復數根
2、立體圖形及平面圖形的公式
圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標準方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側面積S=cxh斜棱柱側面積S=c'xh
正棱錐側面積S=1/2cxh'正棱臺側面積S=1/2(c+c')h'
圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pixr2
圓柱側面積S=cxh=2pixh圓錐側面積S=1/2xcxl=pixrxl
弧長公式l=axra是圓心角的弧度數r>0扇形面積公式s=1/2xlxr
錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側棱長
柱體體積公式V=sxh圓柱體V=pixr2h
3、圖形周長、面積、體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h,則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)
和:(a+b+c)x(a+b-c)x1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設三角形三邊分別為a、b、c,內切圓半徑為r
則三角形面積=(a+b+c)r/2
設三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
高中怎樣能學好數學
課前預習與準備
課本要“預、做、復”。每堂新課之前,做到先預習,特別要把難點或不懂之處用彩筆劃出,以便上課時更加注意。每節內容后面的練習自己可以先做一做,做到看懂70%的新內容,會做80%的練習題。每節新內容學完后,我們要按照課本內容,從易到難,從簡到繁,一步一步地把學過的知識進行比較復習,對概念、定理、公式做出歸納、總結,加深對知識的理解,最好能把課本上的例題自己做一遍。對課本上的概念、定理、公式推理一遍,以形成對知識的整體認識。
課后總結與復習
有的高中學生感到。老師講過的,自己已經聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區別。尤其練習題不太配套時,作業中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
作業要“思、問、集”。作業一定要養成獨立思考的習慣,多從不同的方法、角度入手,多從典型題目中探索多種解題方法,從中得到聯想和啟發。同時,還應多樹立數學解題思想,如:方程的思想、函數的思想、數形結合的思想等常用方法;對于難題,要多問幾個為什么,如改變條件、添加條件、結論與條件互換,原結論還成立嗎?另外,對于自己作業、試卷中出現的錯誤,最好能準備一本錯題集,以便今后復習中使用。做到絕不出現第二次類似錯誤。 總之,學習數學要有方法、計劃和合理的安排。新課授完后,有些同學就感到頭痛, 于是,東看看西翻翻,一天下來,不知道自己學了什么。因此,每個同學都應根據自己的實際情況制訂出合理的學習方法、目標;沒有方法,就會變成一只無頭蒼蠅;沒有目標就會沒有動力。