等比數(shù)列求和公式
q≠1時(shí) Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1時(shí)Sn=na1
(a1為首項(xiàng),an為第n項(xiàng),d為公差,q 為等比)
這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0),等比數(shù)列a1≠ 0。注:q=1 時(shí),{an}為常數(shù)列。利用等比數(shù)列求和公式可以快速的計(jì)算出該數(shù)列的和。
等比數(shù)列求和公式推導(dǎo)
由等比數(shù)列定義
a2=a1xq
a3=a2xq
a(n-1)=a(n-2)xq
an=a(n-1)xq 共n-1個(gè)等式兩邊分別相加得
a2+a3+...+an=[a1+a2+...+a(n-1)]xq
即Sn-a1=(Sn-an)xq,即(1-q)Sn=a1-anxq
當(dāng)q≠1時(shí),Sn=(a1-anxq)/(1-q)(n≥2)
當(dāng)n=1時(shí)也成立.
當(dāng)q=1時(shí)Sn=nxa1
所以Sn=nxa1(q=1);(a1-anxq)/(1-q)(q≠1)。
錯(cuò)位相減法
Sn=a1+a2+a3+...+an
Snxq=a1xq+a2xq+...+a(n-1)xq+anxq=a2+a3+...+an+anxq
以上兩式相減得(1-q)xSn=a1-anxq
數(shù)學(xué)歸納法
證明:(1)當(dāng)n=1時(shí),左邊=a1,右邊=a1·q0=a1,等式成立;
(2)假設(shè)當(dāng)n=k(k≥1,k∈Nx)時(shí),等式成立,即ak=a1qk-1;
當(dāng)n=k+1時(shí),ak+1=ak·q=a1qk=a1·q(k+1)-1;
這就是說(shuō),當(dāng)n=k+1時(shí),等式也成立;
等比數(shù)列的性質(zhì)
①若 m、n、p、q∈Nx,且m+n=p+q,則amxan=apxaq;
②在等比數(shù)列中,依次每 k項(xiàng)之和仍成等比數(shù)列.
“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.
③若(an)是等比數(shù)列,公比為q1,(bn)也是等比數(shù)列,公比是q2,則
(a2n),(a3n)…是等比數(shù)列,公比為q1^2,q1^3…
(can),c是常數(shù),(anxbn),(an/bn)是等比數(shù)列,公比為q1,q1q2,q1/q2。
(5) 等比數(shù)列前n項(xiàng)之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比數(shù)列中,首項(xiàng)A1與公比q都不為零.
注意:上述公式中A^n表示A的n次方。
(6)由于首項(xiàng)為a1,公比為q的等比數(shù)列的通向公式可以寫(xiě)成anxq/a1=q^n,它的指數(shù)函數(shù)y=a^x有著密切的聯(lián)系,從而可以利用指數(shù)函數(shù)的性質(zhì)來(lái)研究等比數(shù)列
由(1)(2)可以判斷,等式對(duì)一切n∈Nx都成立。
高中數(shù)學(xué)重點(diǎn)公式大全
1、一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系x1+x2=-b/ax1xx2=c/a注:韋達(dá)定理
判別式b2-4a=0注:方程有相等的兩實(shí)根
b2-4ac>0注:方程有兩個(gè)不相等的個(gè)實(shí)根
b2-4ac<0注:方程有共軛復(fù)數(shù)根
2、立體圖形及平面圖形的公式
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側(cè)面積S=cxh斜棱柱側(cè)面積S=c'xh
正棱錐側(cè)面積S=1/2cxh'正棱臺(tái)側(cè)面積S=1/2(c+c')h'
圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pixr2
圓柱側(cè)面積S=cxh=2pixh圓錐側(cè)面積S=1/2xcxl=pixrxl
弧長(zhǎng)公式l=axra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2xlxr
錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng)
柱體體積公式V=sxh圓柱體V=pixr2h
3、圖形周長(zhǎng)、面積、體積公式
長(zhǎng)方形的周長(zhǎng)=(長(zhǎng)+寬)×2
正方形的周長(zhǎng)=邊長(zhǎng)×4
長(zhǎng)方形的面積=長(zhǎng)×寬
正方形的面積=邊長(zhǎng)×邊長(zhǎng)
三角形的面積
已知三角形底a,高h(yuǎn),則S=ah/2
已知三角形三邊a,b,c,半周長(zhǎng)p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)
和:(a+b+c)x(a+b-c)x1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r
則三角形面積=(a+b+c)r/2
設(shè)三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
高中怎樣能學(xué)好數(shù)學(xué)
課前預(yù)習(xí)與準(zhǔn)備
課本要“預(yù)、做、復(fù)”。每堂新課之前,做到先預(yù)習(xí),特別要把難點(diǎn)或不懂之處用彩筆劃出,以便上課時(shí)更加注意。每節(jié)內(nèi)容后面的練習(xí)自己可以先做一做,做到看懂70%的新內(nèi)容,會(huì)做80%的練習(xí)題。每節(jié)新內(nèi)容學(xué)完后,我們要按照課本內(nèi)容,從易到難,從簡(jiǎn)到繁,一步一步地把學(xué)過(guò)的知識(shí)進(jìn)行比較復(fù)習(xí),對(duì)概念、定理、公式做出歸納、總結(jié),加深對(duì)知識(shí)的理解,最好能把課本上的例題自己做一遍。對(duì)課本上的概念、定理、公式推理一遍,以形成對(duì)知識(shí)的整體認(rèn)識(shí)。
課后總結(jié)與復(fù)習(xí)
有的高中學(xué)生感到。老師講過(guò)的,自己已經(jīng)聽(tīng)得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對(duì)教師所講的內(nèi)容的理解,還沒(méi)能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時(shí),作業(yè)中往往沒(méi)有老師剛剛講過(guò)的題目類型,因此不能對(duì)比消化。如果自己又不注意對(duì)此落實(shí),天長(zhǎng)日久,就會(huì)造成極大損失。
作業(yè)要“思、問(wèn)、集”。作業(yè)一定要養(yǎng)成獨(dú)立思考的習(xí)慣,多從不同的方法、角度入手,多從典型題目中探索多種解題方法,從中得到聯(lián)想和啟發(fā)。同時(shí),還應(yīng)多樹(shù)立數(shù)學(xué)解題思想,如:方程的思想、函數(shù)的思想、數(shù)形結(jié)合的思想等常用方法;對(duì)于難題,要多問(wèn)幾個(gè)為什么,如改變條件、添加條件、結(jié)論與條件互換,原結(jié)論還成立嗎?另外,對(duì)于自己作業(yè)、試卷中出現(xiàn)的錯(cuò)誤,最好能準(zhǔn)備一本錯(cuò)題集,以便今后復(fù)習(xí)中使用。做到絕不出現(xiàn)第二次類似錯(cuò)誤。 總之,學(xué)習(xí)數(shù)學(xué)要有方法、計(jì)劃和合理的安排。新課授完后,有些同學(xué)就感到頭痛, 于是,東看看西翻翻,一天下來(lái),不知道自己學(xué)了什么。因此,每個(gè)同學(xué)都應(yīng)根據(jù)自己的實(shí)際情況制訂出合理的學(xué)習(xí)方法、目標(biāo);沒(méi)有方法,就會(huì)變成一只無(wú)頭蒼蠅;沒(méi)有目標(biāo)就會(huì)沒(méi)有動(dòng)力。