必胜高考网_全国高考备考和志愿填报信息平台

必勝高考網(wǎng) > 高考備考 > 數(shù)學(xué)備考 >

高考數(shù)學(xué)函數(shù)知識點(diǎn)(2)

時間: 謝君2 數(shù)學(xué)備考

  2.拋物線有一個頂點(diǎn)P,坐標(biāo)為

  P( -b/2a ,(4ac-b^2)/4a )

  當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ= b^2-4ac=0時,P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點(diǎn)個數(shù)

  Δ= b^2-4ac>0時,拋物線與x軸有2個交點(diǎn)。

  Δ= b^2-4ac=0時,拋物線與x軸有1個交點(diǎn)。

  Δ= b^2-4ac<0時,拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  V.二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

  當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

  即ax^2+bx+c=0

  此時,函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

  函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對稱軸如下表:

  解析式 頂點(diǎn)坐標(biāo)對 稱 軸

  y=ax^2(0,0) x=0

  y=a(x-h)^2(h,0) x=h

  y=a(x-h)^2+k(h,k) x=h

  y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a) x=-b/2a

  當(dāng)h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當(dāng)h<0時,則向左平行移動|h|個單位得到.

  當(dāng)h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時,開口向上,當(dāng)a<0時開口向下,對稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時,y隨x的增大而減小;當(dāng)x ≥ -b/2a時,y隨x的增大而增大.若a<0,當(dāng)x ≤ -b/2a時,y隨x的增大而增大;當(dāng)x ≥ -b/2a時,y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|

  當(dāng)△=0.圖象與x軸只有一個交點(diǎn);

  當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時,圖象落在x軸的上方,x為任何實(shí)數(shù)時,都有y>0;當(dāng)a<0時,圖象落在x軸的下方,x為任何實(shí)數(shù)時,都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.

  頂點(diǎn)的橫坐標(biāo),是取得最值時的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點(diǎn)或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時,可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

  (3)當(dāng)題給條件為已知圖象與x軸的兩個交點(diǎn)坐標(biāo)時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

  反比例函數(shù)

  形如 y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個坐標(biāo)軸作垂線,這點(diǎn)、兩個垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(fù)(2和-2)時的函數(shù)圖像。

  當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  知識點(diǎn):

  1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為| k |。

  2.對于雙曲線y=k/x ,若在分母上加減任意一個實(shí)數(shù) (即 y=k/(x±m)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

  對數(shù)函數(shù)

  對數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù) 的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

  右圖給出對于不同大小a所表示的函數(shù)圖形:

  可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

  (1)對數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

  (2)對數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

  (3)函數(shù)總是通過(1,0)這點(diǎn)。

  (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

  (5)顯然對數(shù)函數(shù)無界。

  指數(shù)函數(shù)

  指數(shù)函數(shù)的一般形式為,從上面我們對于冪函數(shù)的討論就可以知道,要想使得x能夠取整個實(shí)數(shù)集合為定義域,則只有使得

  如圖所示為a的不同大小影響函數(shù)圖形的情況。

  可以看到:

  (1) 指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2) 指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

  (3) 函數(shù)圖形都是下凹的。

  (4) a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5) 可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6) 函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

  (7) 函數(shù)總是通過(0,1)這點(diǎn)。

  (8) 顯然指數(shù)函數(shù)無界。

  奇偶性

  注圖:(1)為奇函數(shù)(2)為偶函數(shù)

  1.定義

  一般地,對于函數(shù)f(x)

  (1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

  說明:①奇、偶性是函數(shù)的整體性質(zhì),對整個定義域而言

  ②奇、偶函數(shù)的定義域一定關(guān)于原點(diǎn)對稱,如果一個函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則這個函數(shù)一定不是奇(或偶)函數(shù)。

  (分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)

  ③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義

  2.奇偶函數(shù)圖像的特征:

  定理 奇函數(shù)的圖像關(guān)于原點(diǎn)成中心對稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對稱圖形。

  f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點(diǎn)對稱

  點(diǎn)(x,y)→(-x,-y)

  奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上也是單調(diào)遞增。

  偶函數(shù) 在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上單調(diào)遞減。

  3.奇偶函數(shù)運(yùn)算

  (1). 兩個偶函數(shù)相加所得的和為偶函數(shù).

  (2). 兩個奇函數(shù)相加所得的和為奇函數(shù).

  (3). 一個偶函數(shù)與一個奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).

  (4). 兩個偶函數(shù)相乘所得的積為偶函數(shù).

  (5). 兩個奇函數(shù)相乘所得的積為偶函數(shù).

  (6). 一個偶函數(shù)與一個奇函數(shù)相乘所得的積為奇函數(shù).

  定義域

  (高中函數(shù)定義)設(shè)A,B是兩個非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A--B為集合A到集合B的一個函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;

  值域

  名稱定義

  函數(shù)中,應(yīng)變量的取值范圍叫做這個函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合

  常用的求值域的方法

  (1)化歸法;(2)圖象法(數(shù)形結(jié)合),

  (3)函數(shù)單調(diào)性法,

  (4)配方法,(5)換元法,(6)反函數(shù)法(逆求法),(7)判別式法,(8)復(fù)合函數(shù)法,(9)三角代換法,(10)基本不等式法等

  關(guān)于函數(shù)值域誤區(qū)

  定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學(xué)中,實(shí)行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強(qiáng)化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學(xué)生對函數(shù)的掌握時好時壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)模^不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運(yùn)算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實(shí)踐證明,如果加強(qiáng)了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認(rèn)識。

  “范圍”與“值域”相同嗎?

  “范圍”與“值域”是我們在學(xué)習(xí)中經(jīng)常遇到的兩個概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個不同的概念。“值域”是所有函數(shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。


看過“高考數(shù)學(xué)函數(shù)知識點(diǎn)”

93024 主站蜘蛛池模板: 上海道勤塑化有限公司 | 玻璃钢型材_拉挤模具_玻璃钢拉挤设备——滑县康百思 | 熔体泵|换网器|熔体齿轮泵|熔体计量泵厂家-郑州巴特熔体泵有限公司 | 济南轻型钢结构/济南铁艺护栏/济南铁艺大门-济南燕翔铁艺制品有限公司 | 上海乾拓贸易有限公司-日本SMC电磁阀_德国FESTO电磁阀_德国FESTO气缸 | 代理记账_公司起名核名_公司注册_工商注册-睿婕实业有限公司 | 实验室pH计|电导率仪|溶解氧测定仪|离子浓度计|多参数水质分析仪|pH电极-上海般特仪器有限公司 | 南京种植牙医院【官方挂号】_南京治疗种植牙医院那个好_南京看种植牙哪里好_南京茀莱堡口腔医院 尼龙PA610树脂,尼龙PA612树脂,尼龙PA1010树脂,透明尼龙-谷骐科技【官网】 | 保定市泰宏机械制造厂-河北铸件厂-铸造厂-铸件加工-河北大件加工 | 上海小程序开发-小程序制作-上海小程序定制开发公司-微信商城小程序-上海咏熠 | 贴片电感_贴片功率电感_贴片绕线电感_深圳市百斯特电子有限公司 贴片电容代理-三星电容-村田电容-风华电容-国巨电容-深圳市昂洋科技有限公司 | 伊卡洛斯软装首页-电动窗帘,别墅窗帘,定制窗帘,江浙沪1000+别墅窗帘案例 | 全自动定氮仪-半自动凯氏定氮仪厂家-祎鸿仪器| 体感VRAR全息沉浸式3D投影多媒体展厅展会游戏互动-万展互动 | 无线讲解器-导游讲解器-自助讲解器-分区讲解系统 品牌生产厂家[鹰米讲解-合肥市徽马信息科技有限公司] | 天津电机维修|水泵维修-天津晟佳机电设备有限公司 | 转向助力泵/水泵/发电机皮带轮生产厂家-锦州华一精工有限公司 | 等离子表面处理机-等离子表面活化机-真空等离子清洗机-深圳市东信高科自动化设备有限公司 | 氧化铝球_高铝球_氧化铝研磨球-淄博誉洁陶瓷新材料有限公司 | 药品仓库用除湿机-变电站用防爆空调-油漆房用防爆空调-杭州特奥环保科技有限公司 | 楼承板-开闭口楼承板-无锡海逵楼承板 | 全自动在线分板机_铣刀式在线分板机_曲线分板机_PCB分板机-东莞市亿协自动化设备有限公司 | 河北码上网络科技|邯郸小程序开发|邯郸微信开发|邯郸网站建设 | 工业rfid读写器_RFID工业读写器_工业rfid设备厂商-ANDEAWELL | 日本东丽膜_反渗透膜_RO膜价格_超滤膜_纳滤膜-北京东丽阳光官网 日本细胞免疫疗法_肿瘤免疫治疗_NK细胞疗法 - 免疫密码 | 石英陶瓷,石英坩埚,二氧化硅陶瓷-淄博百特高新材料有限公司 | 包装机_厂家_价格-山东包装机有限公司 | Eiafans.com_环评爱好者 环评网|环评论坛|环评报告公示网|竣工环保验收公示网|环保验收报告公示网|环保自主验收公示|环评公示网|环保公示网|注册环评工程师|环境影响评价|环评师|规划环评|环评报告|环评考试网|环评论坛 - Powered by Discuz! | 拉卡拉POS机官网 - 官方直营POS机办理|在线免费领取 | 兰州牛肉面加盟,兰州牛肉拉面加盟-京穆兰牛肉面 | 亿立分板机_曲线_锯片式_走刀_在线式全自动_铣刀_在线V槽分板机-杭州亿协智能装备有限公司 | 沥青灌缝机_路面灌缝机_道路灌缝机_沥青灌缝机厂家_济宁萨奥机械有限公司 | 密集柜_档案密集柜_智能密集架_密集柜厂家_密集架价格-智英伟业 密集架-密集柜厂家-智能档案密集架-自动选层柜订做-河北风顺金属制品有限公司 | 不锈钢管件(不锈钢弯头,不锈钢三通,不锈钢大小头),不锈钢法兰「厂家」-浙江志通管阀 | 仓储货架_南京货架_钢制托盘_仓储笼_隔离网_环球零件盒_诺力液压车_货架-南京一品仓储设备制造公司 | 刹车盘机床-刹车盘生产线-龙口亨嘉智能装备 | 电竞馆加盟,沈阳网吧加盟费用选择嘉棋电竞_售后服务一体化 | 上海地磅秤|电子地上衡|防爆地磅_上海地磅秤厂家–越衡称重 | 京港视通报道-质量走进大江南北-京港视通传媒[北京]有限公司 | 塑料熔指仪-塑料熔融指数仪-熔体流动速率试验机-广东宏拓仪器科技有限公司 | 电动球阀_不锈钢电动球阀_电动三通球阀_电动调节球阀_上海湖泉阀门有限公司 |