必胜高考网_全国高考备考和志愿填报信息平台

必勝高考網(wǎng) > 高考備考 > 數(shù)學(xué)備考 >

高考數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)

時(shí)間: 謝君2 數(shù)學(xué)備考

  高考數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)

  導(dǎo)數(shù)的定義:

  當(dāng)自變量的增量Δx=x-x0,Δx→0時(shí)函數(shù)增量Δy=f(x)- f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點(diǎn)可導(dǎo),稱之為f在x0點(diǎn)的導(dǎo)數(shù)(或變化率).

  函數(shù)y=f(x)在x0點(diǎn)的導(dǎo)數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在P0[x0,f(x0)] 點(diǎn)的切線斜率(導(dǎo)數(shù)的幾何意義是該函數(shù)曲線在這一點(diǎn)上的切線斜率)。

  一般地,我們得出用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的增減性(單調(diào)性)的法則:設(shè)y=f(x )在(a,b)內(nèi)可導(dǎo)。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個(gè)區(qū)間是單調(diào)增加的(該點(diǎn)切線斜率增大,函數(shù)曲線變得“陡峭”,呈上升狀)。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個(gè)區(qū)間是單調(diào)減小的。所以,當(dāng)f'(x)=0時(shí),y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值

  求導(dǎo)數(shù)的步驟:

  求函數(shù)y=f(x)在x0處導(dǎo)數(shù)的步驟:

  ① 求函數(shù)的增量Δy=f(x0+Δx)-f(x0)

  ② 求平均變化率

 ?、?取極限,得導(dǎo)數(shù)。

  導(dǎo)數(shù)公式:

  ① C'=0(C為常數(shù)函數(shù));

 ?、?(x^n)'= nx^(n-1) (n∈Q*);熟記1/X的導(dǎo)數(shù)

  ③ (sinx)' = cosx;   (cosx)' = - sinx;   (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2   -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2   (secx)'=tanx·secx   (cscx)'=-cotx·cscx   (arcsinx)'=1/(1-x^2)^1/2   (arccosx)'=-1/(1-x^2)^1/2   (arctanx)'=1/(1+x^2)   (arccotx)'=-1/(1+x^2)   (arcsecx)'=1/(|x|(x^2-1)^1/2)   (arccscx)'=-1/(|x|(x^2-1)^1/2)

 ?、?(sinhx)'=hcoshx   (coshx)'=-hsinhx   (tanhx)'=1/(coshx)^2=(sechx)^2   (coth)'=-1/(sinhx)^2=-(cschx)^2   (sechx)'=-tanhx·sechx   (cschx)'=-cothx·cschx   (arsinhx)'=1/(x^2+1)^1/2   (arcoshx)'=1/(x^2-1)^1/2   (artanhx)'=1/(x^2-1) (|x|<1)   (arcothx)'=1/(x^2-1) (|x|>1)   (arsechx)'=1/(x(1-x^2)^1/2)   (arcschx)'=1/(x(1+x^2)^1/2)

 ?、?(e^x)' = e^x;   (a^x)' = a^xlna (ln為自然對(duì)數(shù))   (Inx)' = 1/x(ln為自然對(duì)數(shù))   (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1)   (1/x)'=-x^(-2)

  導(dǎo)數(shù)的應(yīng)用:

  1.函數(shù)的單調(diào)性

  (1)利用導(dǎo)數(shù)的符號(hào)判斷函數(shù)的增減性   利用導(dǎo)數(shù)的符號(hào)判斷函數(shù)的增減性,這是導(dǎo)數(shù)幾何意義在研究曲線變化規(guī)律時(shí)的一個(gè)應(yīng)用,它充分體現(xiàn)了數(shù)形結(jié)合的思想.   一般地,在某個(gè)區(qū)間(a,b)內(nèi),如果f'(x)>0,那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果f'(x)<0,那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞減.   如果在某個(gè)區(qū)間內(nèi)恒有f'(x)=0,則f(x)是常數(shù)函數(shù).   注意:在某個(gè)區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時(shí)f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時(shí)就必須寫f'(x)≥0。

  (2)求函數(shù)單調(diào)區(qū)間的步驟(不要按圖索驥 緣木求魚 這樣創(chuàng)新何言?1.定義最基礎(chǔ)求法2.復(fù)合函數(shù)單調(diào)性)  ?、俅_定f(x)的定義域;   ②求導(dǎo)數(shù);   ③由(或)解出相應(yīng)的x的范圍.當(dāng)f'(x)>0時(shí),f(x)在相應(yīng)區(qū)間上是增函數(shù);當(dāng)f'(x)<0時(shí),f(x)在相應(yīng)區(qū)間上是減函數(shù).

  2.函數(shù)的極值

  函數(shù)的極值的判定   ①如果在兩側(cè)符號(hào)相同,則不是f(x)的極值點(diǎn);   ②如果在附近的左右側(cè)符號(hào)不同,那么,是極大值或極小值.

  3.求函數(shù)極值的步驟

 ?、俅_定函數(shù)的定義域;  ?、谇髮?dǎo)數(shù);   ③在定義域內(nèi)求出所有的駐點(diǎn)與導(dǎo)數(shù)不存在的點(diǎn),即求方程及的所有實(shí)根;  ?、軝z查在駐點(diǎn)左右的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值.

  4.函數(shù)的最值

  (1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)內(nèi)一點(diǎn)處取得的,顯然這個(gè)最大值(或最小值)同時(shí)是個(gè)極大值(或極小值),它是f(x)在(a,b)內(nèi)所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在[a,b]的端點(diǎn)a或b處取得,極值與最值是兩個(gè)不同的概念.

  (2)求f(x)在[a,b]上的最大值與最小值的步驟  ?、偾骹(x)在(a,b)內(nèi)的極值;   ②將f(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值.

  5.生活中的優(yōu)化問題

  生活中經(jīng)常遇到求利潤(rùn)最大、用料最省、效率最高等問題,這些問題稱為優(yōu)化問題,優(yōu)化問題也稱為最值問題.解決這些問題具有非常現(xiàn)實(shí)的意義.這些問題通??梢赞D(zhuǎn)化為數(shù)學(xué)中的函數(shù)問題,進(jìn)而轉(zhuǎn)化為求函數(shù)的最大(小)值問題.

  高考數(shù)學(xué)導(dǎo)數(shù)大題方法

  *(1)求函數(shù)中某參數(shù)的值或給定參數(shù)的值求導(dǎo)數(shù)或切線

  一般來說,一到比較溫和的導(dǎo)數(shù)題的會(huì)在第一問設(shè)置這樣的問題:若f(x)在x=k時(shí)取得極值,試求所給函數(shù)中參數(shù)的值;或者是f(x)在(a,f(a))處的切線與某已知直線垂直,試求所給函數(shù)中參數(shù)的值等等很多條件。雖然會(huì)有很多的花樣,但只要明白他們的本質(zhì)是考察大家求導(dǎo)數(shù)的能力,就會(huì)輕松解決。這一般都是用來送分的,所以遇到這樣的題,一定要淡定,方法是:

  先求出所給函數(shù)的導(dǎo)函數(shù),然后利用題目所給的已知條件,以上述第一種情形為例:令x=k,f(x)的導(dǎo)數(shù)為零,求解出函數(shù)中所含的參數(shù)的值,然后檢驗(yàn)此時(shí)是否為函數(shù)的極值。

  注意:

 ?、賹?dǎo)函數(shù)一定不能求錯(cuò),否則不只第一問會(huì)掛,整個(gè)題目會(huì)一并掛掉。保證自己求導(dǎo)不會(huì)求錯(cuò)的最好方法就是求導(dǎo)時(shí)不要光圖快,一定要小心謹(jǐn)慎,另外就是要將導(dǎo)數(shù)公式記牢,不能有馬虎之處。

 ?、谟龅嚼又械那闆r,一道要記得檢驗(yàn),尤其是在求解出來兩個(gè)解的情況下,更要檢驗(yàn),否則有可能會(huì)多解,造成扣分,得不償失。所以做兩個(gè)字來概括這一類型題的方法就是:淡定。別人送分,就不要客氣。

 ?、矍笄芯€時(shí),要看清所給的點(diǎn)是否在函數(shù)上,若不在,要設(shè)出切點(diǎn),再進(jìn)行求解。切線要寫成一般式。

  *(2)求函數(shù)的單調(diào)性或單調(diào)區(qū)間以及極值點(diǎn)和最值

  一般這一類題都是在函數(shù)的第二問,有時(shí)也有可能在第一問,依照題目的難易來定。這一類題問法都比較的簡(jiǎn)單,一般是求f(x)的單調(diào)(增減)區(qū)間或函數(shù)的單調(diào)性,以及函數(shù)的極大(小)值或是籠統(tǒng)的函數(shù)極值。一般來說,由于北京市高考不要求二階導(dǎo)數(shù)的計(jì)算,所以這類題目也是送分題,所以做這類題也要淡定。這類問題的方法是:

  首先寫定義域,求函數(shù)的導(dǎo)函數(shù),并且進(jìn)行通分,變?yōu)榧俜质叫问?。往下一般有兩類思路,一是走一步看一步型,在行進(jìn)的過程中,一點(diǎn)點(diǎn)發(fā)現(xiàn)參數(shù)應(yīng)該討論的范圍,一步步解題。這種方法個(gè)人認(rèn)為比較累,而且容易丟掉一些情況沒有進(jìn)行討論,所以比較推薦第二種方法,就是所謂的一步到位型,先通過觀察看出我們要討論的參數(shù)的幾個(gè)必要的臨介值,然后以這些值為分界點(diǎn),分別就這些臨界點(diǎn)所分割開的區(qū)間進(jìn)行討論,這樣不僅不會(huì)漏掉一些對(duì)參數(shù)必要的討論,而且還會(huì)是自己做題更有條理,更為高效。

  極值的求法比較簡(jiǎn)單,就是在上述步驟的基礎(chǔ)上,令導(dǎo)函數(shù)為零,求出符合條件的根,然后進(jìn)行列表,判斷其是否為極值點(diǎn)并且判斷出該極值點(diǎn)左右的單調(diào)性,進(jìn)而確定該點(diǎn)為極大值還是極小值,最后進(jìn)行答題。

  最值問題是建立在極值的基礎(chǔ)之上的,只是有些題要比較極值點(diǎn)與邊界點(diǎn)的大小,不能忘記邊界點(diǎn)。

  注意:

 ?、僖⒁鈫栴},看題干問的是單調(diào)區(qū)間還是單調(diào)性,極大值還是極小值,這決定著你最后如何答題。還有最關(guān)鍵的,要注意定義域,有時(shí)題目不會(huì)給出定義域,這時(shí)就需要你自己寫出來。沒有注意定義域問題很嚴(yán)重。

  ②分類要準(zhǔn),不要慌張。

  ③求極值一定要列表,不能使用二階導(dǎo)數(shù),否則只有做對(duì)但不得分的下場(chǎng)。

  *(3)恒成立或在一定條件下成立時(shí)求參數(shù)范圍

  這類問題一般都設(shè)置在導(dǎo)數(shù)題的第三問,也就是最后一問,屬于有一定難度的問題。這就需要我們一定的綜合能力。不僅要對(duì)導(dǎo)數(shù)有一定的理解,而且對(duì)于一些不等式、函數(shù)等的知識(shí)要有比較好的掌握。這一類題目不是送分題,屬于扣分題,但掌握好了方法,也可以百發(fā)百中。方法如下:

  做這類恒成立類型題目或者一定范圍內(nèi)成立的題目的核心的四個(gè)字就是:分離變量。一定要將所求的參數(shù)分離出來,否則后患無窮。有些人總是認(rèn)為不分離變量也可以做。一些簡(jiǎn)單的題目誠(chéng)然可以做,但到了真正的難題,分離變量的優(yōu)勢(shì)立刻體現(xiàn),它可以規(guī)避掉一些極為繁瑣的討論,只用一些簡(jiǎn)單的代數(shù)變形可以搞定,而不分離變量就要面臨著極為麻煩的討論,不僅浪費(fèi)時(shí)間,而且還容易出差錯(cuò)。所以面對(duì)這樣的問題,分離變量是首選之法。當(dāng)然有的題確實(shí)不能分離變量,那么這時(shí)就需要我們的觀察能力,如果還是沒有簡(jiǎn)便方法,那么才會(huì)進(jìn)入到討論階段。

  分離變量后,就要開始求分離后函數(shù)的最大或者最小值,那么這里就要重新構(gòu)建一個(gè)函數(shù),接下來的步驟就和(2)中基本相同了。

  注意:

 ?、俜蛛x時(shí)要注意不等式的方向,必要的時(shí)候還是要討論。

 ?、谝辞迨乔蠓蛛x后函數(shù)的最大值還是最小值,否則容易搞錯(cuò)。

 ?、鄯诸愐Y(jié)合條件看,不能拋開大前提自己胡搞一套。

  最后,這類題還需要一定的不等式知識(shí),比如均值不等式,一些高等數(shù)學(xué)的不等數(shù)等等。這就需要我們有足夠的知識(shí)儲(chǔ)備,這樣做起這樣的題才能更有效率。

  (4)構(gòu)造新函數(shù)對(duì)新函數(shù)進(jìn)行分析

  這類題目題型看似復(fù)雜,但其實(shí)就是在上述問題之上多了一個(gè)步驟,就是將上述的函數(shù)轉(zhuǎn)化為了另一個(gè)函數(shù),并沒有本質(zhì)的區(qū)別,所以這里不再贅述。

  (5)零點(diǎn)問題

  這類題目在選擇填空中更容易出現(xiàn),因?yàn)檫@類問題雖然不難,但要求學(xué)生對(duì)與極值和最值問題有更好的了解,它需要我們結(jié)合零點(diǎn),極大值極小值等方面綜合考慮,所以更容易出成填空題和選擇題。如果出成大題,大致方法如下:

  先求出函數(shù)的導(dǎo)函數(shù),然后分析求解出函數(shù)的極大值與極小值,然后結(jié)合題目中所給的信息與條件,求出在特定區(qū)間內(nèi),極大值與極小值所應(yīng)滿足的關(guān)系,然后求解出參數(shù)的范圍。


看過“高考數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)”

92951 主站蜘蛛池模板: 广州番禺搬家公司_天河黄埔搬家公司_企业工厂搬迁_日式搬家_广州搬家公司_厚道搬迁搬家公司 | 四川成人高考_四川成考报名网| 手板_手板模型制作_cnc手板加工厂-东莞天泓 | 灰板纸、灰底白、硬纸板等纸品生产商-金泊纸业 | 曙光腾达官网-天津脚手架租赁-木板架出租-移动门式脚手架租赁「免费搭设」 | 小青瓦丨古建筑瓦丨青瓦厂家-宜兴市徽派古典建筑材料有限公司 | 广东健伦体育发展有限公司-体育工程配套及销售运动器材的体育用品服务商 | 石英砂矿石色选机_履带辣椒色选机_X光异物检测机-合肥幼狮光电科技 | 河南生物显微镜,全自动冰冻切片机-河南荣程联合科技有限公司 | 赛尔特智能移动阳光房-阳光房厂家-赛尔特建筑科技(广东)有限公司 | EPDM密封胶条-EPDM密封垫片-EPDM生产厂家 | Type-c防水母座|贴片母座|耳机接口|Type-c插座-深圳市步步精科技有限公司 | 天津仓储物流-天津电商云仓-天津云仓一件代发-博程云仓官网 | 温州食堂承包 - 温州市尚膳餐饮管理有限公司 | 无锡网站建设_小程序制作_网站设计公司_无锡网络公司_网站制作 | 北京模型公司-军事模型-工业模型制作-北京百艺模型沙盘公司 | 迪威娱乐|迪威娱乐客服|18183620002 | 安全,主动,被动,柔性,山体滑坡,sns,钢丝绳,边坡,防护网,护栏网,围栏,栏杆,栅栏,厂家 - 护栏网防护网生产厂家 | 防火阀、排烟防火阀、电动防火阀产品生产销售商-德州凯亿空调设备有限公司 | 成都竞价托管_抖音代运营_网站建设_成都SEM外包-成都智网创联网络科技有限公司 | 网站建设-高端品牌网站设计制作一站式定制_杭州APP/微信小程序开发运营-鼎易科技 | 除湿机|工业除湿机|抽湿器|大型地下室车间仓库吊顶防爆除湿机|抽湿烘干房|新风除湿机|调温/降温除湿机|恒温恒湿机|加湿机-杭州川田电器有限公司 | 硫酸钡厂家_高光沉淀硫酸钡价格-河南钡丰化工有限公司 | NMRV减速机|铝合金减速机|蜗轮蜗杆减速机|NMRV减速机厂家-东莞市台机减速机有限公司 | 桥架-槽式电缆桥架-镀锌桥架-托盘式桥架 - 上海亮族电缆桥架制造有限公司 | 胀套-锁紧盘-风电锁紧盘-蛇形联轴器「厂家」-瑞安市宝德隆机械配件有限公司 | 生产加气砖设备厂家很多,杜甫机械加气砖设备价格公道 | 挤奶设备过滤纸,牛奶过滤纸,挤奶机过滤袋-济南蓝贝尔工贸有限公司 | 低气压试验箱_高低温低气压试验箱_低气压实验箱 |林频试验设备品牌 | 珠海白蚁防治_珠海灭鼠_珠海杀虫灭鼠_珠海灭蟑螂_珠海酒店消杀_珠海工厂杀虫灭鼠_立净虫控防治服务有限公司 | 北京网站建设-企业网站建设-建站公司-做网站-北京良言多米网络公司 | 网站建设,北京网站建设,北京网站建设公司,网站系统开发,北京网站制作公司,响应式网站,做网站公司,海淀做网站,朝阳做网站,昌平做网站,建站公司 | 上海小程序开发-小程序制作-上海小程序定制开发公司-微信商城小程序-上海咏熠 | 沙盘模型公司_沙盘模型制作公司_建筑模型公司_工业机械模型制作厂家 | 北京开业庆典策划-年会活动策划公司-舞龙舞狮团大鼓表演-北京盛乾龙狮鼓乐礼仪庆典策划公司 | 广州冷却塔维修厂家_冷却塔修理_凉水塔风机电机填料抢修-广东康明节能空调有限公司 | 粤丰硕水性环氧地坪漆-防静电自流平厂家-环保地坪涂料代理 | 臻知网大型互动问答社区-你的问题将在这里得到解答!-无锡据风网络科技有限公司 | 健康管理师报考条件,考试时间,报名入口—首页 | arch电源_SINPRO_开关电源_模块电源_医疗电源-东佑源 | 南京PVC快速门厂家南京快速卷帘门_南京pvc快速门_世界500强企业国内供应商_南京美高门业 |