圓的標準方程數學教案及反思
圓的標準方程數學教案
教學重點難點
以及措施
教學重點:圓的標準方程理解及運用
教學難點:根據不同條件,利用待定系數求圓的標準方程。
根據教學內容的特點及高一年級學生的年齡、認知特征,緊緊抓住課堂知識的結構關系,遵循“直觀認知――操作體會――感悟知識特征――應用知識”的認知過程,設計出包括:觀察、操作、思考、交流等內容的教學流程。并且充分利用現代化信息技術的教學手段提高教學效率。以此使學生獲取知識,給學生獨立操作、合作交流的機會。學法上注重讓學生參與方程的推導過程,努力拓展學生思維的空間,促其在嘗試中發現,討論中明理,合作中成功,讓學生真正體驗知識的形成過程。
學習者分析
高一年級的學生從知識層面上已經掌握了圓的相關性質;從能力層面具備了一定的觀察、分析和數據處理能力,對數學問題有自己個人的看法;從情感層面上學生思維活躍積極性高,但他們數學應用意識和語言表達的能力還有待加強。
教法設計
問題情境引入法 啟發式教學法 講授法
學法指導
自主學習法 討論交流法 練習鞏固法
教學準備
ppt課件 導學案
教學環節
教學內容
教師活動
學生活動
設計意圖
情景引入
回顧復習
(2分鐘)
1.觀賞生活中有關圓的圖片
2.回顧復習圓的定義,并觀看圓的生成flash動畫。
提問:直線可以用一個方程表示,那么圓可以用一個方程表示嗎?
教師創設情景,引領學生感受圓。
教師提出問題。引導學生思考,引出本節主旨。
學生觀賞圓的圖片和動畫,思考如何表示圓的方程。
生活中的圖片展示,調動學生學習的積極性,讓學生體會到園在日常生活中的廣泛應用
自主學習
(5分鐘)
1.介紹動點軌跡方程的求解步驟:
(1)建系:在圖形中建立適當的坐標系;
(2)設點:用有序實數對(x,y)表示曲 線上任意一點M的坐標;
(3)列式:用坐標表示條件P(M)的方程 ;
(4)化簡:對P(M)方程化簡到最簡形式;
2.學生自主學習圓的方程推導,并完成相應學案內容,
教師介紹求軌跡方程的步驟后,引導學生自學圓的標準方程
自主學習課本中圓的標準方程的推導過程,并完成導學案的內容,并當堂展示。
培養學生自主學習,獲取知識的能力
合作探究(10分鐘)
1.根據圓的標準方程說明確定圓的方程的條件有哪些?
2.點M(x0,y0)與圓(x-a)2+(y-b)2=r2的關系的判斷方法:
(1)點在圓上
(2)點在圓外
(3)點在圓內
教師引導學生分組探討,從旁巡視指導學生在自學和探討中遇到的問題,并鼓勵學生以小組為單位展示探究成果。
學生展開合作性的探討,并陳述自己的研究成果。
通過合作探究和自我的展示,鼓勵學生合作學習的品質
當堂訓練(18分鐘)
1.求下列圓的圓心坐標和半徑
C1: x2+y2=5
C2: (x-3)2+y2=4
C3: x2+(y+1)2=a2(a≠0)
2. 以C(4,-6)為圓心,半徑等于3的圓的標準方程
3. 設圓(x-a)2+(y-b)2=r2
則坐標原點的位置是( )
A.在圓外 B.在圓上
C.在圓內 D.與a的取值有關
4.寫出下列各圓的標準方程(1)圓心在原點,半徑等于5
(2)經過點P(5,1),圓心在點C(6,-2);
(3)以A(2,5),B(0,-1)為直徑的圓.
5.下列方程分別表示什么圖形
(1) x2+y2=0
(2) (x-1)2 =8-(y+2)2
(3) 《圓的標準方程》教學設計-賈偉
6.鞏固提升:已知圓心為C的圓經過點A(1,1)和B(2,-2),且圓心在直線l:x-y+1=0上,求圓C的標準方程并作圖
指導學生就不同條件下給出的圓心和半徑關系,求解圓的標準方程這兩個要素展開訓練。
學生自主開展訓練,并糾正學習中所遇到的問題
鞏固所學知識,并查缺補漏。
回顧小結
(1分鐘)
1.你學到了哪些知識?
2.你掌握了哪些技能?
3.你體會到了哪些數學思想?
采用提問的形式幫助學生回顧和分析本節所學。
學生思考并從知識、技能和思想方法上回顧總結。
培養學生歸納總結能力
作業布置
(1分鐘)
課本87頁習題2-2
A組的第1道題
布置訓練任務
標記并完成相應的任務
檢測學生掌握知識情況。
圓的標準方程數學教學反思
這節課主要是圓的標準方程的推導和一些簡單的運用。它的研究方法坐標法不僅是研究幾何問題的重要方法,而且是一種廣泛應用于其他領域的重要數學方法。如果學生掌握得好,后面的學習“圓錐曲線與方程”會輕松許多。
標準方程的推導,先通過學生的切身體驗,來發現決定圓的要素圓心和半徑,讓學生明確一個圓對應一個方程,在此基礎上借助求曲線方程的基本步驟,由學生自主探究推導出以(3,5)為圓心,4為半徑的圓的標準方程,再由特殊到一般,歸納出以(a,b)為圓心,r為半徑的圓的標準方程。并引導學生找出方程的特征,以幫助學生理解和記憶。
例題教學的設計,主要加深對圓的標準方程的理解及一些簡單的應用。例題安排不多,但變式較多,變式的設計由特殊到一般,由簡到繁,由淺入深,比較符合學生的認知規律,這樣學生接受起來比較容易。
課堂練習,是對本節課目標落實情況的檢測,讓學生明確本節課應該到達什么樣的目標。
這節課幾乎是按自己的教學設計順利完成。在學生動手,雙基落實方面還不錯,學生的活動也比較充分,教師僅是及時的引導和點評,讓學生的主體性得到了較為充分的體現。另外,在教學中不斷的滲透數學思想和方法,讓學生思維得到提升。
圓的標準方程數學教案及練習題相關