2016年高考數(shù)學(xué)三角函數(shù)復(fù)習(xí)總結(jié)
2、公式
積化和差公式:等號左邊的若異名,等號右邊全是sin,等號左邊同名,等號右邊全是cos,可總結(jié)為同名函數(shù)取余弦,異名函數(shù)取正弦。
和差化積公式:若等號左邊全是sin,則右邊異名,若等號左邊全是cos,則等號右邊同名;等號左邊中間的正負(fù)號決定了右邊第二項,若是正,則是cos,若是負(fù),則是sin,然后可以根據(jù)第一條原則寫出完整的右邊式子,最后記得cos-cos要添一個負(fù)號。
3、性質(zhì)
三角函數(shù)符號是重點,也是難點,在理解的基礎(chǔ)上可借助口訣:sinα上正下負(fù);cosα右正左負(fù);tanα奇正偶負(fù).在解簡單的三角不等式時,利用單位圓及三角函數(shù)線是一個小技巧.
4、恒等變形的基本思路
一角二名三結(jié)構(gòu)。即首先觀察角與角之間的關(guān)系,注意角的一些常用變式,角的變換是三角函數(shù)變換的核心;第二看函數(shù)名稱之間的關(guān)系,通常"切化弦";第三觀察代數(shù)式的結(jié)構(gòu)特點。
(1)巧變角(已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換。
(2)三角函數(shù)名互化(切割化弦)。
(3)公式變形使用和三角函數(shù)次數(shù)的降升。
(4)式子結(jié)構(gòu)的轉(zhuǎn)化,包括角、函數(shù)名、式子結(jié)構(gòu)化同。
5、數(shù)形結(jié)合的思想
把抽象的數(shù)和直觀的形雙向聯(lián)系與溝通,使抽象思想與形象思維有機地結(jié)合起來化抽象為形象,這一塊呢主要是一些看起來很難的問題,當(dāng)你畫出圖形,就會變得簡單許多。另外,有關(guān)三角函數(shù)的相位變換,周期變換亦是如此,只要弄懂它的原理就可以了。
6、最值問題
利用正余弦函數(shù)的有界性來求,我們知道sinx、cosx是在-1到+1之間的;我們還可以利用配方法,將其轉(zhuǎn)化為二次函數(shù)來求;還可以利用函數(shù)在區(qū)間內(nèi)的單調(diào)性;配合使用一些基本不等式。我們都可以找到一些例題,加以練習(xí),一定能攻克類似的題目的。