必胜高考网_全国高考备考和志愿填报信息平台

必勝高考網(wǎng) > 高考備考 > 數(shù)學(xué)備考 >

如何突破數(shù)學(xué)四類(lèi)命題難點(diǎn)

時(shí)間: 未知2 數(shù)學(xué)備考
  一、 定位整體
  新課程標(biāo)準(zhǔn)對(duì)“常用邏輯用語(yǔ)”的定位為:“正確使用邏輯用語(yǔ)是現(xiàn)代社會(huì)公民應(yīng)該具備的基本素質(zhì),無(wú)論是進(jìn)行思考、交流,還是從事各項(xiàng)工作,都需要正確的運(yùn)用邏輯用語(yǔ)表達(dá)自己的思想.在本模塊中,同學(xué)們將在義務(wù)教育的基礎(chǔ)上,學(xué)習(xí)常用邏輯用語(yǔ),體會(huì)邏輯用語(yǔ)在表述和論證中的作用,利用這些邏輯用語(yǔ)準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,更好地進(jìn)行交流.” 因此,學(xué)習(xí)邏輯用語(yǔ),不僅要了解數(shù)理邏輯的有關(guān)知識(shí),還要體會(huì)邏輯用語(yǔ)在表述或論證中的作用,使以后的論證和表述更加準(zhǔn)確、清晰和簡(jiǎn)潔.
  二、 明確重點(diǎn)
  “常用邏輯用語(yǔ)”分成三大節(jié),分別為:命題及其關(guān)系,簡(jiǎn)單的邏輯聯(lián)結(jié)詞,全稱(chēng)量詞與存在量詞.
  “命題及其關(guān)系”分兩小節(jié):一、“四種命題”,此節(jié)重點(diǎn)在于四種命題形式及其關(guān)系,互為逆否命題的等價(jià)性;二、“充分條件和必要條件”,此節(jié)重點(diǎn)在于充分條件、必要條件、充要條件的準(zhǔn)確理解以及正確判斷.
  “簡(jiǎn)單的邏輯聯(lián)結(jié)詞”重點(diǎn)在于“且”、 “或”、 “非”這三個(gè)邏輯聯(lián)結(jié)詞的理解和應(yīng)用.
  “全稱(chēng)量詞與存在量詞”重點(diǎn)在于理解全稱(chēng)量詞與存在量詞的意義,以及正確做出含有一個(gè)量詞的命題的否定.
  三、 突破難點(diǎn)
  1. “四種命題”的難點(diǎn)在于分清命題的條件和結(jié)論以及判斷命題的真假
  例1 分別寫(xiě)出下列命題的逆命題、否命題、逆否命題,并判斷它們的真假.
  (1) 全等三角形的面積相等;
  (2) m>時(shí),方程mx2-x+1=0無(wú)實(shí)根;
  (3) 若sinα≠,則α≠30°.
  解析 (1) 條件為兩個(gè)三角形全等,結(jié)論為它們的面積相等.因此,原命題即為“若兩個(gè)三角形全等,則它們的面積相等”,逆命題為“若兩個(gè)三角形面積相等,則它們?nèi)?rdquo;,否命題為“若兩個(gè)三角形不全等,則它們的面積不相等”,逆否命題為“若兩個(gè)三角形面積不相等,則它們不全等”.根據(jù)平面幾何知識(shí),易得原命題和逆否命題為真命題,逆命題和否命題為假命題.
  (2) 原命題即為“若m>,則方程mx2-x+1=0無(wú)實(shí)根”,逆命題為“若方程mx2-x+1=0無(wú)實(shí)根,則m>”,否命題為“若m≤,則方程mx2-x+1=0有實(shí)根”,逆否命題為“若方程mx2-x+1=0有實(shí)根,則m≤”.根據(jù)判別式Δ=1-4m的正負(fù)可知,原命題、逆命題、否命題、逆否命題均為真命題.
  (3) 原命題即為“若sinα≠,則α≠30°”,逆命題為“若α≠30°,則sinα≠”,否命題為“若sinα=,則α=30°”,逆否命題為“若α=30°,則sinα=”.直接判斷原命題與逆命題真假有些困難,但考慮到原命題與逆否命題等價(jià),逆命題與否命題等價(jià),因此可以先考慮逆否命題和否命題;由三角函數(shù)的知識(shí),可知原命題和逆否命題為真命題,逆命題和否命題為假命題.
  突破 對(duì)于判斷命題的真假,我們需要先弄清何為條件、何為結(jié)論,然后根據(jù)相應(yīng)的知識(shí)進(jìn)行判斷,當(dāng)原命題不容易直接判斷時(shí),可以先判斷其逆否命題的真假性,從而得到原命題的真假性.
  2. “充分條件和必要條件”的難點(diǎn)在于充要性的判斷
  例2 在下列命題中,判斷p是q的什么條件.(在“充分不必要條件”、“必要不充分條件”、“充要條件”、“既不充分又不必要條件”中選出一種)
  (1) p:|p|≥2,p∈R;q:方程x2+px+p+3=0有實(shí)根.
  (2) p:圓x2+y2=r2與直線ax+by+c=0相切;q:c2=(a2+b2)r2,其中a2+b2≠0,r≠0.
  (3) 設(shè)集合M={x|x>2},N={x|x<3},p:x∈M∩N;q:x∈M∪N.
  解析 (1) 當(dāng)|p|≥2時(shí),例如p=3,此時(shí)方程x2+px+p+3=0無(wú)實(shí)根,因此“若p則q”為假命題;當(dāng)方程x2+px+p+3=0有實(shí)根時(shí),根據(jù)判別式有p≤-2或p≥6,此時(shí)|p|≥2成立,因此“若q則p”為真命題.故p是q的必要不充分條件.
  (2) 若圓x2+y2=r2與直線ax+by+c=0相切,則圓心(0,0)到直線ax+by+c=0的距離等于r,即r=,化簡(jiǎn)可得c2=(a2+b2)r2,因此“若p則q”為真命題;反過(guò)來(lái),由c2=(a2+b2)r2,可得r=,即圓心(0,0)到直線ax+by+c=0的距離等于r,由解析幾何知識(shí)得圓與直線相切,因此“若q則p”為真命題.故p是q的充要條件.
  (3) M∩N=(2,3),M∪N=R,若x∈(2,3),此時(shí)顯然有x∈R,因此“若p則q”為真命題;反過(guò)來(lái),若x∈R,例如x=5,此時(shí)x?埸(2,3),因此“若q則p”為假命題.故p是q的充分不必要條件.
  突破 ①?gòu)倪壿嫷挠^點(diǎn)理解:判斷充分性、必要性的前提是判斷給定命題的真假性,若“若p則q”為真命題,則p是q的充分條件;若“若q則p”為真命題,則p是q的必要條件;若兩者都是真命題,則p是q的充要條件;若兩者都是假命題,則p是q的既不充分也不必要條件.②從集合的觀點(diǎn)理解:建立命題p,q相應(yīng)的集合. p:A={x|p(x)成立},q:B={x|q(x)成立}.那么:若A?哿B,則p是q的充分條件;若B?哿A,則p是q的必要條件;若A=B,則p是q的充要條件.若A?芫B且B?芫A,則p是q的既不充分也不必要條件.
  例3 已知數(shù)列{an}的前n項(xiàng)和Sn=pn+q(p≠0且p≠1),求證:數(shù)列{an}為等比數(shù)列的充要條件為q=-1.
  解析 充分性:當(dāng)q=-1時(shí),a1=p-1;當(dāng)n≥2時(shí),an=Sn-Sn-1=pn-1(p-1).于是當(dāng)n≥1時(shí),=p,即數(shù)列{an}為等比數(shù)列.
  必要性:當(dāng)n=1時(shí),a1=S1=p+q;當(dāng)n≥2時(shí),an=Sn-Sn-1
  =pn-1(p-1).因?yàn)閜≠0且p≠1,于是=p.又因?yàn)閿?shù)列{an}為等比數(shù)列,所以==p,即=p,解之得q=-1.
  綜上所述,q=-1為數(shù)列{an}為等比數(shù)列的充要條件.
  突破 證明p是q的充要條件需要分兩步:①充分性,把p作為已知條件,結(jié)合命題的前提條件,推出q;②必要性,把q作為已知條件,結(jié)合命題的前提條件,推出p.最后綜上所述,可得p是q的充要條件.特別注意:充分條件的意義只在于保證結(jié)論成立,而不管它對(duì)結(jié)論成立是否必要;必要條件的意義只在于要使結(jié)論成立它必不可少,而不管它對(duì)結(jié)論成立是否充分.因此,在進(jìn)行恒等變形或探求充要條件的過(guò)程中,只注意推導(dǎo)過(guò)程的充分性,其結(jié)果有可能縮小范圍;只注意推導(dǎo)過(guò)程的必要性,其結(jié)果有可能擴(kuò)大范圍.
  3. “簡(jiǎn)單邏輯聯(lián)結(jié)詞”的難點(diǎn)在于復(fù)合命題的真假性判斷以及“命題的否定”與“否命題”的區(qū)分
  例4 指出下列命題的真假.
  (1) -1是奇數(shù)或偶數(shù);
  (2) 屬于集合Q,也屬于集合R;
  (3) A?埭(A∪B).
  解析 (1) 此命題為“p或q”的形式,其中p:-1是奇數(shù);q:-1是偶數(shù).因?yàn)閜為真命題,所以原命題為真命題.
  (2) 此命題為“p且q”的形式,其中p:屬于集合Q;q:屬于集合R.因?yàn)橹挥衠為真命題,所以原命題為假命題.
  (3) 此命題為“非p”的形式,其中p:A?哿(A∪B).因?yàn)閜為真命題,所以原命題為假命題.
  突破 判斷如“p或q”、“p且q”、“非p”形式的復(fù)合命題的真假時(shí),首先要確定命題的構(gòu)成形式,然后判斷其中各簡(jiǎn)單命題的真假,最后再利用真值表判斷復(fù)合命題的真假.
  例5 寫(xiě)出下列各命題的否定和否命題.
  (1) 若x+y是偶數(shù),則x,y都是奇數(shù);
  (2) 若xy=0,則x=0或y=0.
  解析 (1) 命題的否定:若x+y是偶數(shù),則x,y不都是奇數(shù);否命題:若x+y不是偶數(shù),則x,y不都是奇數(shù).
  (2) 命題的否定:若xy=0,則x≠0且y≠0;否命題:若xy≠0,則x≠0且y≠0.
  突破 命題的否定只是否定命題的結(jié)論,而否命題既否定題設(shè),又否定結(jié)論.需注意“x=0或y=0”的否定是“x≠0且y≠0”而不是“x≠0或y≠0”;“x,y都是奇數(shù)”的否定是“x,y不都是奇數(shù)”而不是“x,y都不是奇數(shù)”.
  4. “全稱(chēng)量詞與存在量詞”的難點(diǎn)在于全稱(chēng)命題和存在性命題的真假性判斷以及含有一個(gè)量詞的命題的否定
  例6 判斷下列命題是否為全稱(chēng)命題或存在性命題,并判斷真假.
  (1) 有一個(gè)實(shí)數(shù)α,tanα無(wú)意義;
  (2) 任何一條直線都有斜率;
  (3) ?堝x<0,使x2+x+5<0;
  (4) 自然數(shù)的平方是正數(shù).
  解析 (1) 存在性命題,當(dāng)α=時(shí),tanα無(wú)意義,因此原命題為真命題.
  (2) 全稱(chēng)命題,當(dāng)傾斜角為時(shí),該直線斜率不存在,因此原命題為假命題.
  (3) 存在性命題,由判別式可知Δ=1-4×5=-19<0,所以對(duì)?坌x∈R,x2+x+5>0,因此原命題為假命題.
  (4) 全稱(chēng)命題,存在自然數(shù)0,其平方不是正數(shù),因此原命題為假命題.
  突破 ①要判定全稱(chēng)命題“?坌x∈M,p(x)”為真命題,需要對(duì)集合M中每個(gè)元素x,證明p(x)成立;如果集合M中找到一個(gè)元素x0,使得p(x)不成立,那么這個(gè)全稱(chēng)命題為假命題.②要判定存在性命題“?堝x0∈M,p(x)”為真命題,只需在集合M中找到一個(gè)元素x0,使得p(x0)成立即可;如果在集合M中,使p(x)成立的元素x不存在,那么這個(gè)存在性命題是假命題.
  例7 寫(xiě)出下列命題的否定.
  (1) 面積相等的三角形是全等三角形;
  (2) 有些質(zhì)數(shù)是奇數(shù);
  (3) 對(duì)?坌x∈R,x2+x+1=0都成立;
  (4) ?堝x∈R,x2+2x+5>0.
  解析 (1) 原命題是全稱(chēng)命題,故其否定為:存在面積相等的三角形不是全等三角形.
  (2) 原命題是存在性命題,故其否定為:所有的質(zhì)數(shù)都不是奇數(shù).
  (3) 原命題是全稱(chēng)命題,故其否定為:?堝x∈R,使x2+x+1≠0.
  (4) 原命題是存在性命題,故其否定為: 對(duì)?坌x∈R,x2+2x+5≤0都成立.
  突破 全稱(chēng)命題與存在性命題的區(qū)別在于構(gòu)成兩種命題的量詞不同.實(shí)質(zhì)上,“全稱(chēng)量詞”與“存在量詞”正好構(gòu)成了意義相反的表述,因此在書(shū)寫(xiě)全稱(chēng)命題與存在性命題的否定時(shí),一定要抓住決定命題性質(zhì)的量詞,從對(duì)量詞的否定入手書(shū)寫(xiě)命題的否定.全稱(chēng)命題的否定是存在性命題,而存在性命題的否定是全稱(chēng)命題.
  1. (2011年安徽理科卷)命題“所有能被2整除的數(shù)都是偶數(shù)”的否定是______________.
  2. ( 2011年山東文科卷)已知a,b,c∈R,命題“若a+b+c=3,則a2+b2+c2≥3”的否命題是________.
  3. (2011年湖南文科卷)“x>1”是“|x|>1”的
  __________條件.
  4. (2011年福建理科卷)若a∈R,則“a=2”是“(a-1)(a-2)=0”的______________條件.
  5. (2011年浙江理科卷)“α=”是“cos2α=”的______________條件.
  6. (2011年山東理科卷)對(duì)于函數(shù)y=f(x),x∈R,“y=|f(x)|的圖像關(guān)于y軸對(duì)稱(chēng)”是“y=f(x)是奇函數(shù)”的____________條件.
  7. (2011年浙江文科卷)若a,b為實(shí)數(shù),則“0<ab<1”是“b<”的______________條件.
  8. (2011年四川文科卷)設(shè)函數(shù)f(x)的定義域?yàn)锳,若x1,x2∈A且f (x1)=f(x2)時(shí),總有x1=x2,則稱(chēng)f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).
  給出下列命題:① 函數(shù)f(x)=x2(x∈R)是單函數(shù);② 指數(shù)函數(shù)f(x)=2x(x∈R)是單函數(shù);③ 若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);④ 在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).其中的真命題是________.(寫(xiě)出所有真命題的編號(hào))
  1. 存在一個(gè)能被2整除的數(shù)不是偶數(shù). 2. 若a+b+c≠3,則a2+b2+c2<3. 3. 充分而不必要. 4. 充分而不必要. 5. 充分而不必要. 6. 必要而不充分.  7. 既不充分也不必要. 8. ②③④.
27459 主站蜘蛛池模板: 旋转/数显粘度计-运动粘度测定仪-上海平轩科学仪器 | 丝杆升降机-不锈钢丝杆升降机-非标定制丝杆升降机厂家-山东鑫光减速机有限公司 | 安平县鑫川金属丝网制品有限公司,声屏障,高速声屏障,百叶孔声屏障,大弧形声屏障,凹凸穿孔声屏障,铁路声屏障,顶部弧形声屏障,玻璃钢吸音板 | 礼至家居-全屋定制家具_一站式全屋整装_免费量房设计报价 | 螺旋压榨机-刮泥机-潜水搅拌机-电动泥斗-潜水推流器-南京格林兰环保设备有限公司 | 高压绝缘垫-红色配电房绝缘垫-绿色高压绝缘地毯-上海苏海电气 | 闪电优家-卫生间防水补漏_酒店漏水渗水维修_防水堵漏公司 | 浙江华锤电器有限公司_地磅称重设备_防作弊地磅_浙江地磅售后维修_无人值守扫码过磅系统_浙江源头地磅厂家_浙江工厂直营地磅 | 杜康白酒加盟_杜康酒代理_杜康酒招商加盟官网_杜康酒厂加盟总代理—杜康酒神全国运营中心 | 天津暖气片厂家_钢制散热器_天津铜铝复合暖气片_维尼罗散热器 | 无线遥控更衣吊篮_IC卡更衣吊篮_电动更衣吊篮配件_煤矿更衣吊篮-力得电子 | 硬齿面减速机_厂家-山东安吉富传动设备股份有限公司 | 贵州自考_贵州自学考试网| 美缝剂_美缝剂厂家_美缝剂加盟-地老板高端瓷砖美缝剂 | 七维官网-水性工业漆_轨道交通涂料_钢结构漆 | 烟台螺纹,烟台H型钢,烟台钢材,烟台角钢-烟台市正丰金属材料有限公司 | 电表箱-浙江迈峰电力设备有限公司-电表箱专业制造商 | 储气罐,真空罐,缓冲罐,隔膜气压罐厂家批发价格,空压机储气罐规格型号-上海申容压力容器集团有限公司 | 聚天冬氨酸,亚氨基二琥珀酸四钠,PASP,IDS - 远联化工 | 德州网站开发定制-小程序开发制作-APP软件开发-「两山开发」 | 闭端端子|弹簧螺式接线头|防水接线头|插线式接线头|端子台|电源线扣+护线套|印刷电路板型端子台|金笔电子代理商-上海拓胜电气有限公司 | 环保袋,无纺布袋,无纺布打孔袋,保温袋,环保袋定制,环保袋厂家,环雅包装-十七年环保袋定制厂家 | 小威小说网 - 新小威小说网 - 小威小说网小说搜索引擎 | 土壤养分检测仪|土壤水分|土壤紧实度测定仪|土壤墒情监测系统-土壤仪器网 | 【MBA备考网】-2024年工商管理硕士MBA院校/报考条件/培训/考试科目/提前面试/考试/学费-MBA备考网 | 浩方智通 - 防关联浏览器 - 跨境电商浏览器 - 云雀浏览器 | 岩石钻裂机-液压凿岩机-劈裂机-挖改钻_湖南烈岩科技有限公司 | 焊缝跟踪系统_激光位移传感器_激光焊缝跟踪传感器-创想智控 | 团建-拓展-拓展培训-拓展训练-户外拓展训练基地[无锡劲途] | 手持式线材张力计-套帽式风量罩-深圳市欧亚精密仪器有限公司 | 上海租车公司_上海包车_奔驰租赁_上海商务租车_上海谐焕租车 | LHH药品稳定性试验箱-BPS系列恒温恒湿箱-意大利超低温冰箱-上海一恒科学仪器有限公司 | 振动传感器,检波器-威海广达勘探仪器有限公司 | 耐高温风管_耐高温软管_食品级软管_吸尘管_钢丝软管_卫生级软管_塑料波纹管-东莞市鑫翔宇软管有限公司 | 厂房出租_厂房出售_产业园区招商_工业地产 - 中工招商网 | 喷播机厂家_二手喷播机租赁_水泥浆洒布机-河南青山绿水机电设备有限公司 | 丹佛斯压力传感器,WISE温度传感器,WISE压力开关,丹佛斯温度开关-上海力笙工业设备有限公司 | 聚合甘油__盐城市飞龙油脂有限公司 | 北钻固控设备|石油钻采设备-石油固控设备厂家 | 电竞馆加盟,沈阳网吧加盟费用选择嘉棋电竞_售后服务一体化 | 电动卫生级调节阀,电动防爆球阀,电动软密封蝶阀,气动高压球阀,气动对夹蝶阀,气动V型调节球阀-上海川沪阀门有限公司 |