高二數學知識點總結
一、集合概念
(1)集合中元素的特征:確定性,互異性,無序性。
(2)集合與元素的關系用符號=表示。
(3)常用數集的符號表示:自然數集;正整數集;整數集;有理數集、實數集。
(4)集合的表示法:列舉法,描述法,韋恩圖。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
函數
一、映射與函數:
(1)映射的概念:(2)一一映射:(3)函數的概念:
二、函數的三要素:
相同函數的判斷方法:①對應法則;②定義域(兩點必須同時具備)
(1)函數解析式的求法:
①定義法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
①含參問題的定義域要分類討論;
②對于實際問題,在求出函數解析式后;必須求出其定義域,此時的定義域要根據實際意義來確定。
(3)函數值域的求法:
①配方法:轉化為二次函數,利用二次函數的特征來求值;常轉化為型如:的形式;
②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;
④換元法:通過變量代換轉化為能求值域的函數,化歸思想;
⑤三角有界法:轉化為只含正弦、余弦的函數,運用三角函數有界性來求值域;
⑥基本不等式法:轉化成型如:,利用平均值不等式公式來求值域;
⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。
三、函數的性質:
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用于多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。
判別方法:定義法,圖像法,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。
常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過平移得到函數y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(x)→y=f(-x),關于y軸對稱
y=f(x)→y=-f(x),關于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關于直線x=a對稱;
五、反函數:
(1)定義:
(2)函數存在反函數的條件:
(3)互為反函數的定義域與值域的關系:
(4)求反函數的步驟:①將看成關于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數的定義域(即的值域)。
(5)互為反函數的圖象間的關系:
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
七、常用的初等函數:
(1)一元一次函數:
(2)一元二次函數:
一般式
兩點式
頂點式
二次函數求最值問題:首先要采用配方法,化為一般式,
有三個類型題型:
(1)頂點固定,區間也固定。如:
(2)頂點含參數(即頂點變動),區間固定,這時要討論頂點橫坐標何時在區間之內,何時在區間之外。
(3)頂點固定,區間變動,這時要討論區間中的參數.
等價命題在區間上有兩根在區間上有兩根在區間或上有一根
注意:若在閉區間討論方程有實數解的情況,可先利用在開區間上實根分布的情況,得出結果,在令和檢查端點的情況。
(3)反比例函數:
(4)指數函數:
指數函數:y=(a>o,a≠1),圖象恒過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0
(5)對數函數:
對數函數:y=(a>o,a≠1)圖象恒過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0
注意:
(1)比較兩個指數或對數的大小的基本方法是構造相應的指數或對數函數,若底數不相同時轉化為同底數的指數或對數,還要注意與1比較或與0比較。
高三數學如何復習
高三數學最為關鍵的是式子變形和解題思維,這需要從題目所給的題設和問題去尋求答案,而不是一拿到題就馬上聯想到哪個知識點或者做過類似得題。
高三數學的考察特點在于題目的靈活性和多變性,同樣一道題,只要所給條件變為所求條件,都能形成一個新的題型。
所以我們在高三備考高考數學的時候,要加大審題和思維的比例點,弱化“過程經驗”,強化“思維步驟”。抓分重點按照試卷分布順序依次為選擇、填空、簡單解答題到大題難題。
高三數學備考方法
一、構建知識網絡,注重基礎,重視預習,提高復習效率
數學的基礎知識理解與掌握,基本的數學解題思路分析與數學方法的運用,是第一輪復習的重中之重。對知識點進行梳理,形成完整的知識體系,確保基本概念、公式等牢固掌握。要扎扎實實,對每個知識點都要理解透徹,明確它們要求以及與其他知識之間的聯系。復習課的容量大、內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑,要做到“兩先兩后”,即先預習后聽課,先復習后作業。以提高聽課的主動性,減少聽課的盲目性。而預習了之后,再聽老師講課,就會在記憶上對老師講的內容有所取舍,把重點放在自己還未掌握的內容上,從而提高復習效率。預習還可以培養自己的自學能力。
二、提高課堂聽課效率,勤動手,多動腦
高三的課一般有兩種形式:復習課和評講課,到高三所有課都進入復習階段,通過復習,學生要能檢測出知道什么,哪些還不知道,哪些還不會,因此在復習課之前一定要弄清那些已懂那些還不懂,增強聽課的主動性。現在學生手中都會有一種復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。此外還要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。三建好錯題檔案,做好查漏補缺。
高三數學復習方法有什么
1.對數學概念重新認識,深刻理解其內涵與外延,區分容易混淆的概念。如以角的概念為例,數學課本中出現了不少種角,如直線的斜角,兩條異面直線所成的角,直線與平面所成的角,復數的輻角主值,夾角、倒角等,它們從各自的定義出法,都有一個確定的取值范圍。如兩條異面直線所成的角是銳角或直角,而不是鈍角,這樣保證了它的唯一性。對此理解、掌握了才不會出現概念性錯誤。
2.盡一步加深對數學定理、公式的理解與掌握,注意每個定理、公式的運用條件和范圍。如用平均值不等式求最值,必須滿三個條件,缺一不可。有的同學之所以出錯誤,不是對平均值不等式的結構不熟悉,就是忽視其應滿足的條件。
3.掌握數學典型命題所體現的思想與方法。如對等式的`證明方法,就給大家提供了求二項式展開式或多項式展開式系數和的普遍方法。因此,端正思想,認真看書,全面掌握,并結合其它資料和練習,加深對數學基礎知識的理解,從而為提高解題能力打下堅實的基礎。
高三數學備考策略
忌盲目做題,高三的數學復習一定是有計劃、有目標的,所以千萬不要盲目做題。一輪復習非常具有針對性,對于所有知識點的地毯式轟炸,就要做到不缺不漏。因此,僅靠做數學題一定達不到一輪復習應該具有的效果。盲目做題沒有針對性,更不會有全面性。在概念模糊的情況下一定要回歸課本,注意數學教材上最清晰的概念與原理,注重對知識點運用方法的總結。
同學們在數學專項訓練的時候一定要精煉巧練,“題不在多而在精”,意味著在訓練的過程中一定要求對而不求快,求質而再求量。在做好題的同時還應注重方法的總結,題型的歸納,數學不同題型之間的對比等等,達到融會貫通的目的。
由于每個人對于數學知識的掌握程度各不相同,那么對于不同的題型應有不同的處理方法,對于自己已經熟練的題型應采取瀏覽式觀察,對于自己確實沒有見過或知識點掌握上有問題的題型應仔細分析考察知識點,考察思想,方法等,做到可以舉一反三。