高中數學解題技巧有哪些
①背例題:首先背例題的主要原因就是能夠在考場上遺忘了一些重要公式的時候,可以用題來套公式,這樣可以更好的幫助你理解試題,更好的解決試題中遇到的問題。
②課前預習:很多人可能覺著課前預習對于巧妙解題并沒有什么影響,實則不然,課前預習主要是讓你了解課內出現的一些知識,自然就會有更多的方法來解答自己不會的題目啦。
③背基礎:基礎知識永遠是解題過程中遇到的最多的,所以背誦基礎知識能夠幫助你更好的理解試題。
④綜合理解逐一突破:簡單來講就是由簡到難,很多試題都是用簡單的公式來變換,這也要求學生們能夠舉一反三,這樣才能更好的解決問題。
高中數學解題技巧主要有以下幾種方法
1、配方法:把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。
2、因式分解法:因式分解,就是把一個多項式化成幾個整式乘積的形式。
3、換元法:所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理:一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數。
高考數學復習重點
第一,函數與導數
主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
第二,平面向量與三角函數、三角變換及其應用
這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
第三,數列及其應用
這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統計
這部分和我們的生活聯系比較大,屬應用題。
第六,空間位置關系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
第七,解析幾何
高考的難點,運算量大,一般含參數。
高考數學必考知識點
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面積h-高V=Sh
6、棱錐
S-底面積h-高V=Sh/3
7、棱臺
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C—底面周長
S底—底面積,S側—側面積,S表—表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓臺
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺
r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環體
R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑
V=2π2Rr2=π2Dd2/4
17、桶狀體
D-桶腹直徑d-桶底直徑h-桶高
V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
高考數學沖刺注意事項
重視新增內容考查,新課標高考對新增內容的考查比例遠遠超出它們在教材中占有的比例。例如:三視圖、莖葉圖、定積分、正態分布、統計案例等。
立足基礎,強調通性通法,增大覆蓋面。從歷年高考試題看,高考數學命題都把重點放在高中數學課程中最基礎、最核心的內容上,即關注學生在學習數學和應用數學解決問題的過程中最為重要的、必須掌握的核心觀念、思想方法、基本概念和常用技能,緊緊地圍繞“雙基”對數學的核心內容與基本能力進行重點考查。
突出新課程理念,關注應用,倡導“學以致用”。新課程倡導積極主動、勇于探索的學習方式,注重提高學生的數學思維能力,發展學生的數學應用意識。加強應用意識的培養與考查是教育改革的需要,也是作為工具學科的數學學科特點的體現。有意訓練每年高考試題中都出現的高頻考點。