高考數學備考應試技巧
高中數學提分最快的方法
一、夯實數學基礎的方法
首先課堂緊跟老師,認真聽每一節課,記好課堂筆記,有些學生喜歡自己課后自學,課堂不愛聽講,這是極錯誤的,因為老師對于高考的了解和對知識的掌握,遠遠勝過我們自學,緊跟老師是打好基礎最關鍵的一步。
對課本基礎知識的學習,我們強烈建議大家使用思維導圖,可以把課本上的知識都畫成樹狀層,這樣更容易理解、記憶,這樣知識點不再是孤立而是成了一個網,這比光看書效果要好很多很多。
二、數學正確的做題方法
想學好數學,大量做題確實很有必要,但你真的會做題嗎?多數同學雖然也做了大量的題目,但成績還是不好,核心原因就是做題忽略了最重要的一步,那就是總結反思。每做完一道題目,大家還需要總結一下,問一下自己下面這些問題:它考查了哪些知識、自己有沒有掌握、題目的解題思路在哪里、突破口是什么、屬于哪種題型、此類題型有什么共同的套路、此類題型應該用什么方法來解答。只有多問自己幾個為什么,你才能真正吃透一道題,達到做一道題會一類題。
做題并不是越多越好,要知道題海戰術只是手段,我們最終的目的還是通過做題加深對知識的理解,掌握解題套路,提高做題速度,如果做題不總結,你刷再多題效果也不會明顯。
高考數學備考應試技巧
1、定期重復鞏固
即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長。可以當天鞏固新知識,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節進行知識歸納總結,必須把相關知識串聯在一起,形成知識網絡,達到對知識和方法的整體把握。
2、科學合理安排
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,并非間隔時間越長越好,而要適合自己的復習規律。
3、細心審題、耐心答題,規范準確,減少失誤
計算能力、邏輯推理能力是考試大綱中明確規定的兩種培養的能力。可以說是學好數學的兩種最基本能力,在數學試卷中的考查無處不在。并且在每年的閱卷中因為這兩種能力不好而造成的失分占有相當的比例。所以我們在數學復習時,除抓好知識、題型、方法等方面的教學外,還應通過各種方式、機會提高和規范學生的運算能力和邏輯推理能力。
高考數學知識點
1、函數的單調性
(1)設x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函數;
f(x1)f(x2)0f(x)在[a,b]上是減函數.
(2)設函數yf(x)在某個區間內可導,若f(x)0,則f(x)為增函數;若f(x)0,則f(x)為減函數.
2、函數的奇偶性
對于定義域內任意的x,都有f(-x)=f(x),則f(x)是偶函數;對于定義域內任意的x,都有f(x)f(x),則f(x)是奇函數。奇函數的圖象關于原點對稱,偶函數的圖象關于y軸對稱。
3、判別式
b2-4ac=0注:方程有兩個相等的實根
b2-4ac>0注:方程有兩個不等的實根
b2-4ac<0注:方程沒有實根,有共軛復數根
4、兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
5、倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
6、拋物線
拋物線:y=ax_bx+c就是y等于ax的平方加上bx再加上c。
a>0時,拋物線開口向上;a<0時拋物線開口向下;c=0時拋物線經過原點;b=0時拋物線對稱軸為y軸。
頂點式y=a(x+h)_k就是y等于a乘以(x+h)的平方+k,-h是頂點坐標的x,k是頂點坐標的y,一般用于求值與最小值。
拋物線標準方程:y^2=2px它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0)。
準線方程為x=-p/2由于拋物線的焦點可在任意半軸,故共有標準方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。
高考數學知識點復習
1、三類角的求法:
①找出或作出有關的角。
②證明其符合定義,并指出所求作的角。
③計算大小(解直角三角形,或用余弦定理)
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
3、怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的“垂徑定理”。
4、對線性規劃問題:
作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。
高考數學知識點總結
1.滿足二元一次不等式(組)的x和y的取值構成有序數對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數對(x,y)構成的集合稱為二元一次不等式(組)的解集。
2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區域)。
3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C<0(或≤0)。
4.已知平面區域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應不等式。
5.一個二元一次不等式表示的平面區域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區域是它的各個不等式所表示的平面區域的公共部分,注意邊界是實線還是虛線的含義。“線定界,點定域”。
6.滿足二元一次不等式(組)的整數x和y的取值構成的有序數對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區域內。
7.畫二元一次不等式Ax+By+C≥0所表示的平面區域時,應把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區域時,應把邊界畫成虛線。
8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側,則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側,則Ax0+By0+C與Ax1+Byl+C符號相反。
9.從實際問題中抽象出二元一次不等式(組)的步驟是:
(1)根據題意,設出變量;
(2)分析問題中的變量,并根據各個不等關系列出常量與變量x,y之間的不等式;
(3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。