必胜高考网_全国高考备考和志愿填报信息平台

必勝高考網 > 高考備考 > 數學備考 >

高考數學復習知識點

時間: 舒淇 數學備考

【(一)、映射、函數、反函數】

1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射.

2、對于函數的概念,應注意如下幾點:

(1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數.

(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數關系式,特別是會求分段函數的解析式.

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數.

3、求函數y=f(x)的反函數的一般步驟:

(1)確定原函數的值域,也就是反函數的定義域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)將x,y對換,得反函數的習慣表達式y=f-1(x),并注明定義域.

注意①:對于分段函數的反函數,先分別求出在各段上的反函數,然后再合并到一起.

②熟悉的應用,求f-1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算.

【(二)、函數的解析式與定義域】

1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變量間的對應法則的同時,求出函數的定義域.求函數的定義域一般有三種類型:

(1)有時一個函數來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;

(2)已知一個函數的解析式求其定義域,只要使解析式有意義即可.如:

①分式的分母不得為零;

②偶次方根的被開方數不小于零;

③對數函數的真數必須大于零;

④指數函數和對數函數的底數必須大于零且不等于1;

⑤三角函數中的正切函數y=tanx(x∈R,且k∈Z),余切函數y=cotx(x∈R,x≠kπ,k∈Z)等.

應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).

(3)已知一個函數的定義域,求另一個函數的定義域,主要考慮定義域的深刻含義即可.

已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.

2、求函數的解析式一般有四種情況

(1)根據某實際問題需建立一種函數關系時,必須引入合適的變量,根據數學的有關知識尋求函數的解析式.

(2)有時題設給出函數特征,求函數的解析式,可采用待定系數法.比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可.

(3)若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數的定義域.

(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.

【(三)、函數的值域與最值】

1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

(1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域.

(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.

(3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得.

(4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.

(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

(7)利用函數的`單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域.

(8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域.

2、求函數的最值與值域的區別和聯系

求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.

如函數的值域是(0,16],值是16,無最小值.再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2.可見定義域對函數的值域或最值的影響.

3、函數的最值在實際問題中的應用

函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值.

【(四)、函數的奇偶性】

1、函數的奇偶性的定義:對于函數f(x),如果對于函數定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數f(x)就叫做奇函數(或偶函數).

正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關于原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數定義域上的整體性質).

2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式:

注意如下結論的運用:

(1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;

(2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那么在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函數的復合函數的奇偶性通常是偶函數;

(4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。

3、有關奇偶性的幾個性質及結論

(1)一個函數為奇函數的充要條件是它的圖象關于原點對稱;一個函數為偶函數的充要條件是它的圖象關于y軸對稱.

(2)如要函數的定義域關于原點對稱且函數值恒為零,那么它既是奇函數又是偶函數.

(3)若奇函數f(x)在x=0處有意義,則f(0)=0成立.

(4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。

(5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(-x)是偶函數,G(x)=f(x)-f(-x)是奇函數.

(6)奇偶性的推廣

函數y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數.函數y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數。

【(五)、函數的單調性】

1、單調函數

對于函數f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱為單調函數.

對于函數單調性的定義的理解,要注意以下三點:

(1)單調性是與“區間”緊密相關的概念.一個函數在不同的區間上可以有不同的單調性.

(2)單調性是函數在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替.

(3)單調區間是定義域的子集,討論單調性必須在定義域范圍內.

(4)注意定義的兩種等價形式:

設x1、x2∈[a,b],那么:

①在[a、b]上是增函數;

在[a、b]上是減函數.

②在[a、b]上是增函數.

在[a、b]上是減函數.

需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零.

(5)由于定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這說明單調性使得自變量間的不等關系和函數值之間的不等關系可以“正逆互推”.

5、復合函數y=f[g(x)]的單調性

若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱“同增、異減”.

在研究函數的單調性時,常需要先將函數化簡,轉化為討論一些熟知函數的單調性。因此,掌握并熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過程.

6、證明函數的單調性的方法

(1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據定義,得出結論.

(2)設函數y=f(x)在某區間內可導.

如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數.

【(六)、函數的圖象】

函數的圖象是函數的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識.

求作圖象的函數表達式

與f(x)的關系

由f(x)的圖象需經過的變換

y=f(x)±b(b>0)

沿y軸向平移b個單位

y=f(x±a)(a>0)

沿x軸向平移a個單位

y=-f(x)

作關于x軸的對稱圖形

y=f(|x|)

右不動、左右關于y軸對稱

y=|f(x)|

上不動、下沿x軸翻折

y=f-1(x)

作關于直線y=x的對稱圖形

y=f(ax)(a>0)

橫坐標縮短到原來的,縱坐標不變

y=af(x)

縱坐標伸長到原來的|a|倍,橫坐標不變

y=f(-x)

作關于y軸對稱的圖形

【例】定義在實數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

①求證:f(0)=1;

②求證:y=f(x)是偶函數;

③若存在常數c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函數f(x)是不是周期函數,如果是,找出它的一個周期;如果不是,請說明理由.

思路分析:我們把沒有給出解析式的函數稱之為抽象函數,解決這類問題一般采用賦值法.

解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.

②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函數.

③分別用(c>0)替換x、y,有f(x+c)+f(x)=

所以,所以f(x+c)=-f(x).

兩邊應用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

所以f(x)是周期函數,2c就是它的一個周期.

高考數學重要知識點

1、“包含”關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2、“相等”關系(5≥5,且5≤5,則5=5)

實例:設A={x|x2—1=0}B={—1,1}“元素相同”

結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時BíA那么A=B

3、不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

高考數學知識點

(1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

(2)指數函數的值域為大于0的實數集合。

(3)函數圖形都是下凹的。

(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

(5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函數總是在某一個方向上無限趨向于X軸,永不相交。

(7)函數總是通過(0,1)這點。

(8)顯然指數函數無界。

奇偶性

定義

一般地,對于函數f(x)

(1)如果對于函數定義域內的任意一個x,都有f(—x)=—f(x),那么函數f(x)就叫做奇函數。

(2)如果對于函數定義域內的任意一個x,都有f(—x)=f(x),那么函數f(x)就叫做偶函數。

(3)如果對于函數定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

(4)如果對于函數定義域內的任意一個x,f(—x)=—f(x)與f(—x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

高考數學知識點歸納

反比例函數

形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

自變量x的取值范圍是不等于0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。

當K>0時,反比例函數圖像經過一,三象限,是減函數

當K<0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

知識點:

1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

高考數學知識點梳理

定義:

x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。

范圍:

傾斜角的取值范圍是0°≤α<180°。

理解:

(1)注意“兩個方向”:直線向上的方向、x軸的正方向;

(2)規定當直線和x軸平行或重合時,它的傾斜角為0度。

意義:

①直線的傾斜角,體現了直線對x軸正向的傾斜程度;

②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;

③傾斜角相同,未必表示同一條直線。

公式:

k=tanα

k>0時α∈(0°,90°)

k<0時α∈(90°,180°)

k=0時α=0°

當α=90°時k不存在

ax+by+c=0(a≠0)傾斜角為A,

則tanA=—a/b,

A=arctan(—a/b)

當a≠0時,

傾斜角為90度,即與X軸垂直

102647 主站蜘蛛池模板: 定硫仪,量热仪,工业分析仪,马弗炉,煤炭化验设备厂家,煤质化验仪器,焦炭化验设备鹤壁大德煤质工业分析仪,氟氯测定仪 | 氧氮氢联合测定仪-联测仪-氧氮氢元素分析仪-江苏品彦光电 | 东莞工厂厂房装修_无尘车间施工_钢结构工程安装-广东集景建筑装饰设计工程有限公司 | 欧必特空气能-商用空气能热水工程,空气能热水器,超低温空气源热泵生产厂家-湖南欧必特空气能公司 | 冷油器,取样冷却器,热力除氧器-连云港振辉机械设备有限公司 | 施工电梯_齿条货梯_烟囱电梯_物料提升机-河南大诚机械制造有限公司 | 红立方品牌应急包/急救包加盟,小成本好项目代理_应急/消防/户外用品加盟_应急好项目加盟_新奇特项目招商 - 中红方宁(北京) 供应链有限公司 | 骨密度检测仪_骨密度分析仪_骨密度仪_动脉硬化检测仪专业生产厂家【品源医疗】 | 深圳办公室装修-写字楼装修设计-深圳标榜装饰公司 | 储气罐,真空罐,缓冲罐,隔膜气压罐厂家批发价格,空压机储气罐规格型号-上海申容压力容器集团有限公司 | 派财经_聚焦数字经济内容服务平台 | 高扬程排污泵_隔膜泵_磁力泵_节能自吸离心水泵厂家-【上海博洋】 | 广州展览制作工厂—[优简]直营展台制作工厂_展会搭建资质齐全 | 小型气象站_车载气象站_便携气象站-山东风途物联网 | _网名词典_网名大全_qq网名_情侣网名_个性网名 | 【直乐】河北石家庄脊柱侧弯医院_治疗椎间盘突出哪家医院好_骨科脊柱外科专业医院_治疗抽动症/关节病骨伤权威医院|排行-直乐矫形中医医院 | 泰国试管婴儿_泰国第三代试管婴儿_泰国试管婴儿费用/多少钱_孕泰来 | 温湿度记录纸_圆盘_横河记录纸|霍尼韦尔记录仪-广州汤米斯机电设备有限公司 | 福建自考_福建自学考试网 | 新型游乐设备,360大摆锤游乐设备「诚信厂家」-山东方鑫游乐设备 新能源汽车电池软连接,铜铝复合膜柔性连接,电力母排-容发智能科技(无锡)有限公司 | 冷却塔改造厂家_不锈钢冷却塔_玻璃钢冷却塔改造维修-广东特菱节能空调设备有限公司 | ?水马注水围挡_塑料注水围挡_防撞桶-常州瑞轩水马注水围挡有限公司 | 创富网-B2B网站|供求信息网|b2b平台|专业电子商务网站 | 优秀的临床医学知识库,临床知识库,医疗知识库,满足电子病历四级要求,免费试用 | 天然气分析仪-液化气二甲醚分析仪|传昊仪器 | 空压机商城|空气压缩机|空压机配件-压缩机网旗下商城 | 纸张环压仪-纸张平滑度仪-杭州纸邦自动化技术有限公司 | 洗地机-全自动/手推式洗地机-扫地车厂家_扬子清洁设备 | 不锈钢散热器,冷却翅片管散热器厂家-无锡市烨晟化工装备科技有限公司 | 尾轮组_头轮组_矿用刮板_厢式刮板机_铸石刮板机厂家-双驰机械 | 全自动定氮仪-半自动凯氏定氮仪厂家-祎鸿仪器 | 深圳宣传片制作-企业宣传视频制作-产品视频拍摄-产品动画制作-短视频拍摄制作公司 | 交通气象站_能见度检测仪_路面状况监测站- 天合环境科技 | 青海电动密集架_智能密集架_密集架价格-盛隆柜业青海档案密集架厂家 | 华禹护栏|锌钢护栏_阳台护栏_护栏厂家-华禹专注阳台护栏、楼梯栏杆、百叶窗、空调架、基坑护栏、道路护栏等锌钢护栏产品的生产销售。 | 电动葫芦|手拉葫芦|环链电动葫芦|微型电动葫芦-北京市凌鹰起重机械有限公司 | 招商帮-一站式网络营销服务|互联网整合营销|网络推广代运营|信息流推广|招商帮企业招商好帮手|搜索营销推广|短视视频营销推广 | 深圳VI设计-画册设计-LOGO设计-包装设计-品牌策划公司-[智睿画册设计公司] | 玻璃钢板-玻璃钢防腐瓦-玻璃钢材料-广东壹诺 | 气弹簧定制-气动杆-可控气弹簧-不锈钢阻尼器-工业气弹簧-可调节气弹簧厂家-常州巨腾气弹簧供应商 | 交联度测试仪-湿漏电流测试仪-双85恒温恒湿试验箱-常州市科迈实验仪器有限公司 |