高考數學重要公式集匯
高考數學重要公式:等比數列公式
(1)等比數列的通項公式是:An=A1×q^(n-1)
若通項公式變形為an=a1/q*q^n(n∈N*),當q>0時,則可把an看作自變量n的函數,點(n,an)是曲線y=a1/q*q^x上的一群孤立的點。
(2) 任意兩項am,an的關系為an=am·q^(n-m)
(3)從等比數列的定義、通項公式、前n項和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。
(5) 等比求和:Sn=a1+a2+a3+.......+an
①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
?、诋攓=1時, Sn=n×a1(q=1)
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數的等比數列各項取同底數數后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can 高考,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。
高考數學重要公式:韋達定理公式
韋達定理公式:
一元二次方程ax^2+bx+c (a不為0)中
設兩個根為x和y
則x+y=-b/a
xy=c/a
韋達定理在更高次方程中也是可以使用的。一般的,對一個n次方程∑AiX^i=0
它的根記作X1,X2…,Xn
我們有
∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n)
…
∏Xi=(-1)^n*A(0)/A(n)
其中∑是求和,∏是求積。
如果一元二次方程
在復數集中的根是,那么
法國家韋達最早發現代數方程的根與系數之間有這種關系,因此 高中地理,人們把這個關系稱為韋達定理。是有趣的,韋達的16世紀就得出這個定理,證明這個定理要依靠代數基本定理,而代數基本定理卻是在1799年才由高斯作出第一個實質性的論性。
由代數基本定理可推得:任何一元 n 次方程
在復數集中必有根。因此,該方程的左端可以在復數范圍內分解成一次因式的乘積:
其中是該方程的個根。兩端比較系數即得韋達定理。
韋達定理在方程論中有著廣泛的應用。
定理的證明
設x_1,x_2是一元二次方程ax^2+bx+c=0的兩個解,且不妨令x_1 \ge x_2。根據求根公式,有
x_1=\frac{-b + \sqrt {b^2-4ac}},x_2=\frac{-b - \sqrt {b^2-4ac}}
所以
x_1+x_2=\frac{-b + \sqrt {b^2-4ac} + \left (-b \right) - \sqrt {b^2-4ac}} =-\frac,
x_1x_2=\frac{ \left (-b + \sqrt {b^2-4ac} \right) \left (-b - \sqrt {b^2-4ac} \right)}{\left (2a \right)^2} =\frac
高考數學重要公式:數列知識點公式定理記憶口訣
數列點公式定理口訣
等差等比兩數列,通項公式N項和。
兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。
數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。
歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。
還有歸納法,證明步驟程序化:
首先驗證再假定,從K向著K加1,