高三數學二輪復習技巧
1、首先,要加強基礎知識的回顧與內化。由于第一輪復習時間比較長,范圍也比較廣,前面復習過的內容容易遺忘,而臨考前的強化訓練,對遺忘的基本概念,基本思維方法又不能全部覆蓋,這就要求同學們在二輪復習階段的課后要抽出時間多看課本,回顧基本概念、性質、法則、公式、公理、定理;回顧基本的數學方法與數學思想,回顧疑點,查漏補缺。
2、其次,要緊跟老師的復習思路與步驟。課堂上要認真聽講,力圖當堂課內容當堂課消化;認真完成老師布置的習題,同時要重視數學課本中的典型習題。做練習時,遇到不會的或拿不準的題目要打上記號。不管對錯都要留下自己的思路,等老師講評時心中就有數了,起碼能夠知道當時解題時的思維偏差在何處,對偶爾做對的題目也不會輕易放過,還能夠檢測出在哪些地方復習不到位,哪些地方有疏忽或漏洞。
3、加強數學復習的計劃性。由于第二輪復習的前后跨越性比較大,這就要求同學們要事先回顧基礎知識,回顧第一輪中的相關內容,抓住復習的主動權,以適應大跨度帶來的不適應。
高三數學二輪應該如何復習
一、注意基礎知識的整合、鞏固。二輪復習要注意回歸課本,課本是考試內容的載體,是高考命題的依據。濃縮課本知識,進一步夯實基礎,提高數學解題的準確性和速度
二、查漏補缺,保強攻弱。在二輪復習中,對自己的薄弱環節要加強學習,平衡發展,加強各章節知識之間的橫向聯系,針對“一?!笨荚囍械膯栴}要很好的解決,根據自己的實際情況作出合理的安排。
三、提高數學運算能力,規范解答過程。在高考中運算占很大比例,一定要重視運算技巧粗中有細,提高運算準確性和速度,同時,要規范解答過程及書寫。
四、強化數學思維,構建知識體系。二輪復習階段同學們在聽課時注意把重點要放到理解老師對問題思路的分析以及解法的歸納總結,以便于同學們在刷題時做到思路清晰,迅速準確。
高三數學第二輪重點復習內容
專題一:函數與不等式,以函數為主線,不等式和函數綜合題型是考點
函數的性質:著重掌握函數的單調性,奇偶性,周期性,對稱性。這些性質通常會綜合起來一起考察,并且有時會考察具體函數的這些性質,有時會考察抽象函數的這些性質。
一元二次函數:一元二次函數是貫穿中學階段的一大函數,初中階段主要對它的一些基礎性質進行了了解,高中階段更多的是將它與導數進行銜接,根據拋物線的開口方向,與x軸的交點位置,進而討論與定義域在x軸上的擺放順序,這樣可以判斷導數的正負,最終達到求出單調區間的目的,求出極值及最值。
不等式:這一類問題常常出現在恒成立,或存在性問題中,其實質是求函數的最值。當然關于不等式的解法,均值不等式,這些不等式的基礎知識點需掌握,還有一類較難的綜合性問題為不等式與數列的結合問題,掌握幾種不等式的放縮技巧是非常必要的。
專題二:數列。以等差等比數列為載體,考察等差等比數列的通項公式,求和公式,通項公式和求和公式的關系,求通項公式的幾種常用方法,求前n項和的幾種常用方法,這些知識點需要掌握。
專題三:三角函數,平面向量,解三角形。三角函數是每年必考的知識點,難度較小,選擇,填空,解答題中都有涉及,有時候考察三角函數的公式之間的互相轉化,進而求單調區間或值域;有時候考察三角函數與解三角形,向量的綜合性問題,當然正弦,余弦定理是很好的工具。向量可以很好得實現數與形的轉化,是一個很重要的知識銜接點,它還可以和數學的一大難點解析幾何整合。
專題四:立體幾何。立體幾何中,三視圖是每年必考點,主要出現在選擇,填空題中。大題中的立體幾何主要考察建立空間直角坐標系,通過向量這一手段求空間距離,線面角,二面角等。
另外,需要掌握棱錐,棱柱的性質,在棱錐中,著重掌握三棱錐,四棱錐,棱柱中,應該掌握三棱柱,長方體。空間直線與平面的位置關系應以證明垂直為重點,當然??疾斓姆椒殚g接證明。
專題五:解析幾何。直線與圓錐曲線的位置關系,動點軌跡的探討,求定值,定點,最值這些為近年來考的熱點問題。解析幾何是考生所公認的難點,它的難點不是對題目無思路,不是不知道如何化解所給已知條件,難點在于如何巧妙地解了已知條件,如何巧妙地將復雜的運算量進行化簡。當然這里邊包含了一些常用方法,常用技巧,需要學生去記憶,體會。
專題六:概率統計,算法,復數。算發與復數一般會出現在選擇題中,難度較小,概率與統計問題著重考察學生的閱讀能力和獲取信息的能力,與實際生活關系密切,學生需學會能有效得提取信息,翻譯信息。做到這一點時,題目也就不攻自破了。
專題七:極坐標與參數方程,幾何證明。這部分所考察的題目比較簡單,主要出現在選擇,填空題中,學生需要熟記公式。
二輪復習時數學該怎么復習
1注重課本基礎知識
近幾年高考數學試題堅持新題不難,難題不怪的命題方向。強調對通性通法的考查,并且一些高考試題能在課本中找到“原型”。盡管剩下的復習時間不多,但仍要注意回歸課本,只有透徹理解課本例題,習題所涵蓋的數學知識和解題方法,才能以不變應萬變。
2要善于反思歸納
解題后的反思與歸納是非常關鍵的。解題之后進行反思是提高數學思維能力的有效方法。教師要善于在題目的講解后進行解題方法和技巧等的一些歸納,特別是對解題切入點的回顧。總之,不僅要反思計算的正誤、方法的好差、題目的變式等,還要引導學生歸納解題時所用過的知識及數學思想方法等,我們可以圍繞本專題的主題先提煉出幾個本質性的問題出來,然后通過具體問題的解決總結出處理這幾個問題的一般方法與思想。
3加強思維訓練,規范答題過程
解題一定要非常規范,俗語說:“不怕難題不得分,就怕每題都扣分”,因此要形成良好的學習習慣,務必將解題過程寫得層次分明結構完整。
通過訓練過好四關:一是審題關,審題要慢,答題要快,要逐句逐字看題,找出關鍵句,發掘隱含條件,尋找突破口;二是運算關,準字當先,爭取既準又快,因此熟記一些常用的中間結論是非常必要的;三是書寫關,要一步一步答題,重視解題過程的語言表達,條理清楚,步步有據,規范簡潔,優美整齊的答題習慣。四是題后反思關,做題不在多而在精,想要以少勝多,貴在反思。
高中數學公式口訣
《集合與函數》
內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數
正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
《三角函數》
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,
變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用
1加余弦想余弦,1 減余弦想正弦,冪升一次角減半,升冪降次它為范
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集
《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
《數列》
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。
《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關于二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。
《立體幾何》
點線面三位一體,柱錐臺球為代表。距離都從點出發,角度皆為線線成。
高中《立體幾何》
高中《立體幾何》
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典范。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。