2022全國高考甲卷理科數學試卷
2022全國高考甲卷理科數學試卷
高考數學提分建議
一、課內重視聽講,課后及時復習
接受一種新的知識,主要實在課堂上進行的,所以要重視課堂上的學習效率,找到適合自己的學習方法,上課時要跟住老師的思路,積極思考。下課之后要及時復習,遇到不懂的地方要及時去問,在做作業的時候,先把老師課堂上講解的內容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急于翻看答案。還要經常性的總結和復習,把知識點結合起來,變成自己的知識體系。
二、多做題,養成良好的解題習慣
要想學好數學,大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數學成績。剛開始做題的時候先以書上習題為主,答好基礎,然后逐漸增加難度,開拓思路,練習各種類型的解題思路,對于容易出現錯誤的題型,應該記錄下來,反復加以聯系。在做題的時候應該養成良好的解題習慣,集中注意力,這樣才能進入最佳的狀態,形成習慣,這樣在考試的時候才能運用自如。
高考數學三大難點
一、函數
1.函數的基本概念
函數的概念,函數的單調性,函數的奇偶性,這些屬于函數的基本概念,已經在高一數學必修一中有了詳細的介紹,在此不再贅述。
2.指數函數
單調性是指數函數的重要性質,特別是函數圖象的無限伸展性,x軸是函數圖象的漸近線,當0+∞,y->0;當a>1時,x->-∞,y->0;當a>1時,a的值越大,第一象限內圖象越靠近y軸,遞增的速度越快;
3.對數函數
對數函數的性質是每年高考的必考內容之一,其中單調性和對數函數的定義域是熱點問題,其單調性取決于底數與“1”的大小關系.
二、三角函數
1.命題趨勢
高考可能仍會將三角函數概念、同角三角函數的關系式和誘導公式作為基礎內容,融于三角求值、化簡及解三角形的'考查中.由該部分知識的基礎性決定這一部分知識可以和其他知識融合考查,高考中需要關注.
2.三角函數式的化簡要遵循“三看”原則
(1)一看“角”,這是最重要的一環,通過看角之間的差別與聯系,把角進行合理的拆分,從而正確使用公式.
(2)二看”函數名稱”,看函數名稱之間的差異,從而確定使用的公式,常見的有”切化弦”
(3)三看”結構特征”,分析結構特征,可以幫助我們找到變形的方向,常見的有“遇到分式要通分”等.多做三角函數練習題會對更加熟悉的掌握三角函數有幫助,這里給大家推薦李老師教的三角函數解題法。
三、導數
1.導數的概念
1)如果當Δx-->0時,Δy/Δx-->常數A,就說函數y=f(x)在點x0處可導,并把A叫做f(x)在點x0處的導數(瞬時變化率).記作f’(x0)的幾何意義是曲線y=f(x)在點(x0,f(x0))處的切線的斜率.瞬時速度就是位移函數s對時間t的導數.
2)如果函數f(x)在開區間(a,b)內每一點都可導,其導數值在(a,b)內構成一個新的函數,叫做f(x)在開區間(a,b)內導數,記作f’(x).
3)如果函數f(x)在點x0處可導,那么函數y=f(x)在點x0處連續.
2.函數的導數與導數值的區別與聯系:導數是原來函數的導函數,而導數值是導函數在某一點的函數值,導數值是常數.
3.求導
在高中數學導數求導過程中,要仔細分析函數解析式的結構特征,緊扣求導法則,聯系基本函數求導公式,對于不具備求導法則結構形式的要適當恒等變形,對于比較復雜的函數,如果直接套用求導法則,會使求導過程繁瑣冗長,且易出錯,此時,可將解析式進行合理變形,轉化為教易求導的結構形
高考數學萬能解題法
高考數學萬能解題法——熟悉基本的解題步驟和解題方法
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。
高考數學萬能解題法——審題要認真仔細
對于一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,并從中找出隱含條件。
有些學生沒有養成讀題、思考的習慣,心里著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實際解題時,應特別注意,審題要認真、仔細。
高考數學萬能解題法——常見函數值域或最值的經典求法
函數值域是函數概念中三要素之一,是高考中必考內容,具有較強的綜合性,貫穿整個高中數學的始終。而在高考試卷中的形式可謂千變萬化,但萬變不離其宗,真正實現了常考常新的考試要求。所以,我們應該掌握一些簡單函數的值域求解的基本方法。
高考數學萬能解題法——學會畫圖
畫圖是一個翻譯的過程,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。
高考數學答題注意事項
1、規范答題很重要:找到解題方法后,書寫要簡明扼要,快速規范,不拖泥帶水,高考評分是按步給分,關鍵步驟不能丟,但允許合理省略非關鍵步驟。答題時,盡量使用數學符號,這比文字敘述要節省時間且嚴謹。即使過程比較簡單,也要簡要地寫出基本步驟,否則會被扣分。經常看到考生的卷面出現“會而不對”、“對而不全”的情況,造成考生自己的估分與實際得分相差很多。尤其是平面幾何初步中的“跳步”書寫,使考生丟分,所以考生要盡可能把過程寫得詳盡、準確。
2、分步列式,盡量避免用綜合或連等式:高考評分是分步給分,寫出每一個過程對應的式子,只要表達正確都可以得到相應的分數。有些考生喜歡寫出一個綜合或連等式,這種方式就不好,因為只要發現綜合式中有一處錯誤,就可能丟過程分。對于沒有得出最后結果的試題,分步列式也可以得到相應的過程分,由此增加得分機會。
3、盡量保證證明過程及計算方法大眾化:解題時,使用通用符號,不易吃虧。有些考生為圖簡便使用一些特殊方法,可一旦結果有錯,就會影響得分。