正弦定理的幾種證明方法
正弦定理的證明方法有很多種,以下是其中幾種常見的證明方法:
方法一:利用三角形的面積公式
證明:設(shè)三角形的外接圓半徑為R,則三角形的面積S為:
S=1/2acsinB=1/2bcsinA=1/2absinC
由正弦定理可知:
sinA=a/2R,sinB=b/2R,sinC=c/2R
將sinA、sinB、sinC代入面積公式得:
S=1/(4R2)acimes(a/2R)imes(b/2R)imes(c/2R)=abc/8R2
因為三角形的面積是定值,所以abc=8R2,即a/sinA=b/sinB=c/sinC=2R。
方法二:利用余弦定理
證明:設(shè)三角形的三邊長分別為a、b、c,對應(yīng)角分別為A、B、C,則有:
cosA=(b^2+c^2-a^2)/(2bc),cosB=(a^2+c^2-b^2)/(2ac),cosC=(a^2+b^2-c^2)/(2ab)
將上述三個式子相乘得:
cosA×cosB×cosC=(b^2+c^2-a^2)/(2bc)×(a^2+c^2-b^2)/(2ac)×(a^2+b^2-c^2)/(2ab)
由于cosA、cosB、cosC的乘積是常數(shù),因此可以得出:
a/sinA=b/sinB=c/sinC
方法三:利用向量數(shù)量積
證明:設(shè)三角形的三邊長分別為a、b、c,對應(yīng)角分別為A、B、C,則有:
|BA|×|BC|×cosB=(|AB|×|AC|)×cos(π-A)
由于cosB和cos(π-A)都不為0,因此可以得出:
|BA|/|BC|=|AC|/|AB|=sinA/sinC
同理可以得出:
|BA|/|AB|=sinB/sinA
|BC|/|AC|=sinC/sinB
因此可以得出:
a/sinA=b/sinB=c/sinC
方法四:利用正弦定理的推論
證明:由正弦定理可知,在任意三角形ABC中,有:
a=2RimessinA
b=2RimessinB
c=2RimessinC
所以可以得出:
a/sinA=b/sinB=c/sinC
正弦定理的公式是什么
sin^2(α/2)=(1-cosα)/2。
在直角三角形中,∠A(非直角)的對邊與斜邊的比叫做∠A的正弦,故記作sinA,即sinA=∠A的對邊/∠A的斜邊 古代說法,正弦是股與弦的比例。
古代說的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜邊。
股就是人的大腿,長長的,古人稱直角三角形中長的那個直角邊為“股”;正方的直角三角形,應(yīng)是大腿站直。
正弦是∠α(非直角)的對邊與斜邊的比值,余弦是∠A(非直角)的鄰邊與斜邊的比值。
勾股弦放到圓里。弦是圓周上兩點(diǎn)連線。
最大的弦是直徑。 把直角三角形的弦放在直徑上,股就是長的弦,即正弦,而勾就是短的弦,即余弦。
按現(xiàn)代說法,正弦是直角三角形某個角(非直角)的對邊與斜邊之比,即:對邊/斜邊。
高中數(shù)學(xué)正弦定理公式
數(shù)學(xué)正弦定理公式:a/sinA=b/sinB=c/sinC=2R;余弦定理公式:cos A=(b?+c?-a?)/2bc。
正余弦定理指正弦定理和余弦定理,是揭示三角形邊角關(guān)系的重要定理,直接運(yùn)用它可解決三角形的問題,若對余弦定理加以變形并適當(dāng)移于其它知識,則使用起來更為方便、靈活。
一、正弦定理推論公式
1、a=2RsinA;b=2RsinB;c=2RsinC。
2、a:b=sinA:sinB;a:c=sinA:sinC;b:c=sinB:sinC;a:b:c=sinA:sinB:sinC。
二、余弦定理推論公式
1、cosA=(b^2+c^2-a^2)/2bc;2、cosB=(a^2+c^2-b^2)/2ac;3、cosC=(a^2+b^2-c^2)/2ab。
三、正弦定理的運(yùn)用:
1、已知三角形的兩角與一邊,解三角形。
2、已知三角形的兩邊和其中一邊所對的角,解三角形。
3、運(yùn)用a:b:c=sinA:sinB:sinC解決角之間的轉(zhuǎn)換關(guān)系。
四、余弦定理的運(yùn)用:
1、當(dāng)已知三角形的兩邊及其夾角,可由余弦定理得出已知角的對邊。
2、當(dāng)已知三角形的三邊,可以由余弦定理得到三角形的三個內(nèi)角。
3、當(dāng)已知三角形的三邊,可以由余弦定理得到三角形的面積。
正弦定理的證明方法四種
正弦定理的證明方法有很多種,以下是四種常見的證明方法:
方法一:利用三角形的面積公式
證明:設(shè)三角形的外接圓半徑為R,則三角形的面積S為:
S=1/2acsinB=1/2bcsinA=1/2absinC
由正弦定理可知:
sinA=a/2R,sinB=b/2R,sinC=c/2R
將sinA、sinB、sinC代入面積公式得:
S=1/(4R2)acimes(a/2R)imes(b/2R)imes(c/2R)=abc/8R2
因為三角形的面積是定值,所以abc=8R2,即a/sinA=b/sinB=c/sinC=2R。
方法二:利用余弦定理
證明:設(shè)三角形的三邊長分別為a、b、c,對應(yīng)角分別為A、B、C,則有:
cosA=(b^2+c^2-a^2)/(2bc),cosB=(a^2+c^2-b^2)/(2ac),cosC=(a^2+b^2-c^2)/(2ab)
將上述三個式子相乘得:
cosA×cosB×cosC=(b^2+c^2-a^2)/(2bc)×(a^2+c^2-b^2)/(2ac)×(a^2+b^2-c^2)/(2ab)
由于cosA、cosB、cosC的乘積是常數(shù),因此可以得出:
a/sinA=b/sinB=c/sinC
方法三:利用向量數(shù)量積
證明:設(shè)三角形的三邊長分別為a、b、c,對應(yīng)角分別為A、B、C,則有:
向量BA與向量BC的數(shù)量積為:
|BA|×|BC|×cosB=(|AB|×|AC|)×cos(π-A)
由于cosB和cos(π-A)都不為0,因此可以得出:
∣BA∣/∣BC∣=∣AC∣/∣AB∣=sinA/sinC
同理可以得出:
∣BA∣/∣AB∣=sinB/sinA
∣BC∣/∣AC∣=sinC/sinB
因此可以得出:
a/sinA=b/sinB=c/sinC
方法四:利用正弦定理的推論
證明:由正弦定理可知,在任意三角形ABC中,有:
a=2RimessinA
b=2RimessinB
c=2RimessinC
所以可以得出:
a/sinA=b/sinB=c/sinC
求正弦定理的推導(dǎo)
在△abc中,設(shè)ab⊥cd
cd=a·sinb
cd=b·sina
∴a·sinb=b·sina
得到
a/sina=b/sinb
同理,在△abc中,
b/sinb=c/sinc
常見的初中數(shù)學(xué)公式
1 過兩點(diǎn)有且只有一條直線
2 兩點(diǎn)之間線段最短
3 同角或等角的補(bǔ)角相等
4 同角或等角的余角相等
5 過一點(diǎn)有且只有一條直線和已知直線垂直
6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補(bǔ)
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18 推論1直角三角形的兩個銳角互余
19 推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角