必胜高考网_全国高考备考和志愿填报信息平台

必勝高考網 > 中考 > 中考數學備考 >

中考數學一模模擬試題附答案

時間: 思晴2 中考數學備考

  中考數學一模模擬試題A級 基礎題

  A.(2,4)  B.(-2,-4)  C.(-4,2) D.(4,-2)

  2.拋物線y=x2+bx+c的圖象先向右平移2個單位長度,再向下平移3個單位長度,所得圖象的函數解析式為y=(x-1)2-4,則b,c的值為(  )

  A.b=2,c=-6 B.b=2,c=0 C.b=-6,c=8  D.b=-6,c=2

  3.如圖3-4-11,二次函數y=ax2+bx+c的圖象開口向上,對稱軸為直線x=1,圖象經過(3,0),下列結論中,正確的一項是(  )

  A.abc<0   B.2a+b<0  C.a-b+c<0  D.4ac-b2<0

  4.二次函數y=ax2+bx的圖象如圖3-4-12,那么一次函數y=ax+b的圖象大致是(  )

  5.若拋物線y=x2-2x+c與y軸的交點為(0,-3),則下列說法不正確的是(  )

  A.拋物線開口向上       B.拋物線的對稱軸是x=1

  C.當x=1時,y的最大值為-4   D.拋物線與x軸的交點為(-1,0),(3,0)

  6.二次函數y=ax2+bx+c圖象上部分點的坐標滿足下表:

  x … -3 -2 -1 0 1 …

  y … -3 -2 -3 -6 -11 …

  則該函數圖象的頂點坐標為(  )

  A.(-3,-3) B.(-2,-2) C.(-1,-3) D.(0,-6)

  7.若關于x的函數y=kx2+2x-1與x軸僅有一個公共點,則實數k的值為__________.

  8.請寫出一個開口向上,并且與y軸交于點(0,1)的拋物線的解析式______________.

  9.已知拋物線y=-x2+bx+c經過點A(3,0),B(-1,0).

  (1)求拋物線的解析式;

  (2)求拋物線的頂點坐標.

  中考數學一模模擬試題B級 中等題

  10.已知二次函數y=x2-3x+m(m為常數)的圖象與x軸的一個交點為(1,0),則關于x的一元二次方程x2-3x+m=0的兩實數根是(  )

  A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3

  11.二次函數y=ax2+bx+c的圖象如圖3-4-13,給出下列結論:①2a+b>0;②b>a>c;③若-1

  圖3-4-13

  12.(2013年廣東)已知二次函數y=x2-2mx+m2-1.

  (1)當二次函數的圖象經過坐標原點O(0,0)時,求二次函數的解析式;

  (2)如圖3-4-14,當m=2時,該拋物線與y軸交于點C,頂點為D,求C,D兩點的坐標;

  (3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.

  中考數學一模模擬試題C級 拔尖題

  13.如圖3-4-15,已知拋物線y=1a(x-2)(x+a)(a>0)與x軸交于點B,C,與y軸交于點E,且點B在點C的左側.

  (1)若拋物線過點M(-2,-2),求實數a的值;

  (2)在(1)的條件下,解答下列問題;

  ①求出△BCE的面積;

  ②在拋物線的對稱軸上找一點H,使CH+EH的值最小,直接寫出點H的坐標.

  14.已知二次函數y=mx2+nx+p圖象的頂點橫坐標是2,與x軸交于A(x1,0),B(x2,0),x1<0

  (1)求證:n+4m=0;

  (2)求m,n的值;

  (3)當p>0且二次函數圖象與直線y=x+3僅有一個交點時,求二次函數的最大值.

  15.如圖3-4-16,在平面直角坐標系中,頂點為(3,4)的拋物線交y軸于A點,交x軸與B,C兩點(點B在點C的左側),已知A點坐標為(0,-5).

  (1)求此拋物線的解析式;

  (2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C的位置關系,并給出證明;

  (3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形.若存在,求點P的坐標;若不存在,請說明理由.

  中考數學一模模擬試題答案

  1.A

  2.B 解析:利用反推法解答, 函數y=(x-1)2-4的頂點坐標為(1,-4),其向左平移2個單位長度,再向上平移3個單位長度,得到函數y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函數頂點坐標為(-1,-1),函數解析式為y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.

  3.D 4.C 5.C 6.B

  7.k=0或k=-1 8.y=x2+1(答案不唯一)

  9.解:(1)∵拋物線y=-x2+bx+c經過點A(3,0),B(-1,0),

  ∴拋物線的解析式為y=-(x-3)(x+1),

  即y=-x2+2x+3.

  (2)∵y=-x2+2x+3=-(x-1)2+4,

  ∴拋物線的頂點坐標為(1,4).

  10.B 11.①③④

  12.解:(1)將點O(0,0)代入,解得m=±1,

  二次函數關系式為y=x2+2x或y=x2-2x.

  (2)當m=2時,y=x2-4x+3=(x-2)2-1,

  ∴D(2,-1).當x=0時,y=3,∴C(0,3).

  (3)存在.接連接C,D交x軸于點P,則點P為所求.

  由C(0,3),D(2,-1)求得直線CD為y=-2x+3.

  當y=0時,x=32,∴P32,0.

  13.解:(1)將M(-2,-2)代入拋物線解析式,得

  -2=1a(-2-2)(-2+a),

  解得a=4.

  (2)①由(1),得y=14(x-2)(x+4),

  當y=0時,得0=14(x-2)(x+4),

  解得x1=2,x2=-4.

  ∵點B在點C的左側,∴B(-4,0),C(2,0).

  當x=0時,得y=-2,即E(0,-2).

  ∴S△BCE=12×6×2=6.

  ②由拋物線解析式y=14(x-2)(x+4),得對稱軸為直線x=-1,

  根據C與B關于拋物線對稱軸x=-1對稱,連接BE,與對稱軸交于點H,即為所求.

  設直線BE的解析式為y=kx+b,

  將B(-4,0)與E(0,-2)代入,得-4k+b=0,b=-2,

  解得k=-12,b=-2.∴直線BE的解析式為y=-12x-2.

  將x=-1代入,得y=12-2=-32,

  則點H-1,-32.

  14.(1)證明:∵二次函數y=mx2+nx+p圖象的頂點橫坐標是2,

  ∴拋物線的對稱軸為x=2,即-n2m=2,

  化簡,得n+4m=0.

  (2)解:∵二次函數y=mx2+nx+p與x軸交于A(x1,0),B(x2,0),x1<0

  ∴OA=-x1,OB=x2,x1+x2=-nm,x1•x2=pm.

  令x=0,得y=p,∴C(0,p).∴OC=|p|.

  由三角函數定義,得tan∠CAO=OCOA=-|p|x1,tan∠CBO=OCOB=|p|x2.

  ∵tan∠CAO-tan∠CBO=1,即-|p|x1-|p|x2=1.

  化簡,得x1+x2x1•x2=-1|p|.

  將x1+x2=-nm,x1•x2=pm代入,得-nmpm=-1|p|化簡,得⇒n=p|p|=±1.

  由(1)知n+4m=0,

  ∴當n=1時,m=-14;當n=-1時,m=14.

  ∴m,n的值為:m=14,n=-1(此時拋物線開口向上)或m=-14,n=1(此時拋物線開口向下).

  (3)解:由(2)知,當p>0時,n=1,m=-14,

  ∴拋物線解析式為:y=-14x2+x+p.

  聯立拋物線y=-14x2+x+p與直線y=x+3解析式得到-14x2+x+p=x+3,

  化簡,得x2-4(p-3)=0.

  ∵二次函數圖象與直線y=x+3僅有一個交點,

  ∴一元二次方程根的判別式等于0,

  即Δ=02+16(p-3)=0,解得p=3.

  ∴y=-14x2+x+3=-14(x-2)2+4.

  當x=2時,二次函數有最大值,最大值為4.

  15.解:(1)設此拋物線的解析式為y=a(x-3)2+4,

  此拋物線過點A(0,-5),

  ∴-5=a(0-3)2+4,∴a=-1.

  ∴拋物線的解析式為y=-(x-3)2+4,

  即y=-x2+6x-5.

  (2)拋物線的對稱軸與⊙C相離.

  證明:令y=0,即-x2+6x-5=0,得x=1或x=5,

  ∴B(1,0),C(5,0).

  設切點為E,連接CE,

  由題意,得,Rt△ABO∽Rt△BCE.

  ∴ABBC=OBCE,即12+524=1CE,

  解得CE=426.

  ∵以點C為圓心的圓與直線BD相切,⊙C的半徑為r=d=426.

  又點C到拋物線對稱軸的距離為5-3=2,而2>426.

  則此時拋物線的對稱軸與⊙C相離.

  (3)假設存在滿足條件的點P(xp,yp),

  ∵A(0,-5),C(5,0),

  ∴AC2=50,

  AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.

  ①當∠A=90°時,在Rt△CAP中,

  由勾股定理,得AC2+AP2=CP2,

  ∴50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,

  整理,得xp+yp+5=0.

  ∵點P(xp,yp)在拋物線y=-x2+6x-5上,

  ∴yp=-x2p+6xp-5.

  ∴xp+(-x2p+6xp-5)+5=0,

  解得xp=7或xp=0,∴yp=-12或yp=-5.

  ∴點P為(7,-12)或(0,-5)(舍去).

  ②當∠C=90°時,在Rt△ACP中,

  由勾股定理,得AC2+CP2=AP2,

  ∴50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,

  整理,得xp+yp-5=0.

  ∵點P(xp,yp)在拋物線y=-x2+6x-5上,

  ∴yp=-x2p+6xp-5,

  ∴xp+(-x2p+6xp-5)-5=0,

  解得xp=2或xp=5,∴yp=3或yp=0.

  ∴點P為(2,3)或(5,0)(舍去)

  綜上所述,滿足條件的點P的坐標為(7,-12)或(2,3).


猜你感興趣:

1.中考數學一模模擬試題及答案

2.中考數學一模模擬試卷及答案

3.中考數學一模模擬試題帶答案

4.中考數學一模測試題附答案

97407 主站蜘蛛池模板: 丝杆升降机-不锈钢丝杆升降机-非标定制丝杆升降机厂家-山东鑫光减速机有限公司 | 3d可视化建模_三维展示_产品3d互动数字营销_三维动画制作_3D虚拟商城 【商迪3D】三维展示服务商 广东健伦体育发展有限公司-体育工程配套及销售运动器材的体育用品服务商 | 讲师宝经纪-专业培训机构师资供应商_培训机构找讲师、培训师、讲师经纪就上讲师宝经纪 | 全自动过滤器_反冲洗过滤器_自清洗过滤器_量子除垢环_量子环除垢_量子除垢 - 安士睿(北京)过滤设备有限公司 | 净化车间装修_合肥厂房无尘室设计_合肥工厂洁净工程装修公司-安徽盛世和居装饰 | 小青瓦丨古建筑瓦丨青瓦厂家-宜兴市徽派古典建筑材料有限公司 | 震动筛选机|震动分筛机|筛粉机|振筛机|振荡筛-振动筛分设备专业生产厂家高服机械 | 气动球阀_衬氟蝶阀_调节阀_电动截止阀_上海沃托阀门有限公司 | 花纹铝板,合金铝卷板,阴极铝板-济南恒诚铝业有限公司 | 工业雾炮机_超细雾炮_远程抑尘射雾器-世纪润德环保设备 | 接地电阻测试仪[厂家直销]_电缆故障测试仪[精准定位]_耐压测试仪-武汉南电至诚电力设备 | 大功率金属激光焊接机价格_不锈钢汽车配件|光纤自动激光焊接机设备-东莞市正信激光科技有限公司 定制奶茶纸杯_定制豆浆杯_广东纸杯厂_[绿保佳]一家专业生产纸杯碗的厂家 | 振动传感器,检波器-威海广达勘探仪器有限公司 | 带压开孔_带压堵漏_带压封堵-菏泽金升管道工程有限公司 | 防水试验机_防水测试设备_防水试验装置_淋雨试验箱-广州岳信试验设备有限公司 | 聚合氯化铝价格_聚合氯化铝厂家_pac絮凝剂-唐达净水官网 | 厚壁钢管-厚壁无缝钢管-小口径厚壁钢管-大口径厚壁钢管 - 聊城宽达钢管有限公司 | 申江储气罐厂家,储气罐批发价格,储气罐规格-上海申江压力容器有限公司(厂) | 冷水机-工业冷水机-冷水机组-欧科隆品牌保障 | 亚洲工业智能制造领域专业门户网站 - 亚洲自动化与机器人网 | 氟氨基酮、氯硝柳胺、2-氟苯甲酸、异香兰素-新晨化工 | 编织人生 - 权威手工编织网站,编织爱好者学习毛衣编织的门户网站,织毛衣就上编织人生网-编织人生 | 焦作网 WWW.JZRB.COM | 中药超微粉碎机(中药细胞级微粉碎)-百科 | 环保袋,无纺布袋,无纺布打孔袋,保温袋,环保袋定制,环保袋厂家,环雅包装-十七年环保袋定制厂家 | 台式低速离心机-脱泡离心机-菌种摇床-常州市万丰仪器制造有限公司 | 间甲酚,间甲酚厂家-山东祥东新材料 | 岸电电源-60HZ变频电源-大功率变频电源-济南诚雅电子科技有限公司 | 置顶式搅拌器-优莱博化学防爆冰箱-磁驱搅拌器-天津市布鲁克科技有限公司 | 注塑机-压铸机-塑料注塑机-卧式注塑机-高速注塑机-单缸注塑机厂家-广东联升精密智能装备科技有限公司 | 红酒招商加盟-葡萄酒加盟-进口红酒代理-青岛枞木酒业有限公司 | 档案密集架_电动密集架_移动密集架_辽宁档案密集架-盛隆柜业厂家现货批发销售价格公道 | 阁楼货架_阁楼平台_仓库仓储设备_重型货架_广州金铁牛货架厂 | 深圳市超时尚职业培训学校,培训:月嫂,育婴,养老,家政;化妆,美容,美发,美甲. | 油液红外光谱仪-油液监测系统-燃油嗅探仪-上海冉超光电科技有限公司 | 语料库-提供经典范文,文案句子,常用文书,您的写作得力助手 | 咖啡加盟,咖啡店加盟连锁品牌-卡小逗 | 蒸压釜-陶粒板隔墙板蒸压釜-山东鑫泰鑫智能装备有限公司 | Win10系统下载_32位/64位系统/专业版/纯净版下载 | 开云(中国)Kaiyun·官方网站-登录入口| SMC-SMC电磁阀-日本SMC气缸-SMC气动元件展示网 |