2023年高考典型試題解讀
全國甲卷文科綜合的歷史材料題,給出了涉及明朝、清朝以及新中國三個歷史時段有關海軍的三則材料,總分值25分的三道大題,分別為“簡析明朝的海上實力”“說明中國海軍實力從晚清到現代的變化”“概括影響中國海軍實力的主要因素”,考查的不只是史料知識,但必須以史料為基礎,學生需要知道特定史實與特定時間和空間的聯系。歷史有變化也有延續,在不同的時空框架下,對事物進行判斷時需要將認識對象置于具體的時空條件下進行考查。這三則材料體現了中國海軍發展的螺旋式上升,折射出中國在近現代發展過程中實力的不斷提升,尤其是當前對科技驅動發展的重視。一系列材料的組合與問題設計深化了學生對歷史的理解,涵育了家國情懷,體現出學科核心素養高度綜合性、整合性的特點。
數學物理突出綜合分析和知識應用能力考查
備受關注的數學,在2022年新高考I卷中也再次出現熱議試題。選擇題“從2至8的7個整數中隨機取2個不同的數,則這2個數互質的概率為( )”,本題一度被認為計數煩瑣、考查能力單一,但如果放在整張試卷中看,只有數學思維敏銳、靈活的學生才能在面對本題時氣定神閑。從道理上說,我們需要先列出所有的數目組合(排列組合公式是高中數學的基礎知識),再寫出滿足條件的數來算百分比,這像是“列舉法”的典型運用,但實際上,如何在列舉時不重復且不遺漏不煩瑣,需要有條理地計數(例如相鄰數、與質數相比等規則),學生需要把握問題關鍵,篩選最優方法。教師在日常教學中需要培養學生抓住數學本質條分縷析解決問題的能力。此外,更便捷的方法是發現分母是21之后即能迅速排除掉選項A、C,而7個整數中僅質數有4個,互質數已有6組,再加上相鄰數,足以讓我們快速判斷互質概率一定大于B選項數值三分之一,頭腦靈活的學生能迅速得出答案D。這種化繁為簡的能力對一個人來說,是終身受益的,遠比記住一個公式重要。
試卷中還有其他情境性、應用性的試題,如取材于南水北調工程的一道題,以我國的重大建設成就南水北調工程為背景,題干稍長,學生讀題時要能迅速抓住關鍵信息,發現其中蘊含的數學關系,如水位高度和相應水面面積之間、單位之間的關系,試題要求學生運用數學思維進行分析,解決實際問題,強化了對學生獲取信息、處理信息、應用信息能力的考查,包含了豐富的內涵。這類試題在其他學科中也多有出現,如物理學業水平考試(北京卷)選擇了我國首座國際標準跳臺滑雪場地“雪如意”材料,題干對運動員跳臺滑雪的四個階段做了詳盡描述,試題讓學生對四個現象做正誤判斷,意在考查學生聯系生活實際理解物理概念和規律的能力。如果教學中學生只是被動聽講,從來沒有運用過知識去主動解決真實問題,就很難應對這類試題。
高考數學題型特點和答題技巧
1.選擇題——“不擇手段”
題型特點:
(1)概念性強:數學中的每個術語、符號,乃至習慣用語,往往都有明確具體的含義,這個特點反映到選擇題中,表現出來的就是試題的概念性強,試題的陳述和信息的傳遞,都是以數學的學科規定與習慣為依據,決不標新立異。
(2)量化突出:數量關系的研究是數學的一個重要的組成部分,也是數學考試中一項主要的內容,在高考的數學選擇題中,定量型的試題所占的比重很大,而且許多從形式上看為計算定量型選擇題,其實不是簡單或機械的計算問題,其中往往蘊含了對概念、原理、性質和法則的考查,把這種考查與定量計算緊密地結合在一起,形成了量化突出的試題特點。
(3)充滿思辨性:這個特點源于數學的高度抽象性、系統性和邏輯性。作為數學選擇題,尤其是用于選擇性考試的高考數學試題,只憑簡單計算或直觀感知便能正確作答的試題不多,幾乎可以說并不存在,絕大多數的選擇題,為了正確作答,或多或少總是要求考生具備一定的觀察、分析和邏輯推斷能力。思辨性的要求充滿題目的字里行間。
(4)形數兼備:數學的研究對象不僅是數,還有圖形,而且對數和圖形的討論與研究,不是孤立開來分割進行,而是有分有合,將它們辯證統一起來。這個特色在高中數學中已經得到充分的顯露。因此,在高考的數學選擇題中,便反映出形數兼備這一特點,其表現是幾何選擇題中常常隱藏著代數問題,而代數選擇題中往往又寓有幾何圖形的問題。因此,數形結合與形數分離的解題方法是高考數學選擇題的一種重要且有效的思想方法與解題方法。
(5)解法多樣化:以其他學科比較,“一題多解”的現象在數學中表現突出,尤其是數學選擇題由于它有備選項,給試題的解答提供了豐富的有用信息,有相當大的提示性,為解題活動展現了廣闊的天地,大大地增加了解答的途徑和方法。常常潛藏著極其巧妙的解法,有利于對考生思維深度的考查。
解題策略:
(1)注意審題。把題目多讀幾遍,弄清這個題目求什么,已知什么,求、知之間有什么關系,把題目搞清楚了再動手答題。
(2)答題順序不一定按題號進行。可先從自己熟悉的題目答起,從有把握的題目入手,使自己盡快進入到解題狀態,產生解題的激情和欲望,再解答陌生或不太熟悉的題目。若有時間,再去拼那些把握不大或無從下手的題。這樣也許能超水平發揮。
(3)數學選擇題大約有70%的題目都是直接法,要注意對符號、概念、公式、定理及性質等的理解和使用,例如函數的性質、數列的性質就是常見題目。
(4)挖掘隱含條件,注意易錯易混點,例如集合中的空集、函數的定義域、應用性問題的限制條件等。
(5)方法多樣,不擇手段。高考試題凸現能力,小題要小做,注意巧解,善于使用數形結合、特值(含特殊值、特殊位置、特殊圖形)、排除、驗證、轉化、分析、估算、極限等方法,一旦思路清晰,就迅速作答。不要在一兩個小題上糾纏,杜絕小題大做,如果確實沒有思路,也要堅定信心,“題可以不會,但是要做對”,即使是“蒙”也有25%的勝率。
(6)控制時間。一般不要超過40分鐘,最好是25分鐘左右完成選擇題,爭取又快又準,為后面的解答題留下充裕的時間,防止“超時失分”。
2.填空題——“直撲結果”
題型特點:
填空題和選擇題同屬客觀性試題,它們有許多共同特點:其形態短小精悍,考查目標集中,答案簡短、明確、具體,不必填寫解答過程,評分客觀、公正、準確等等,不過填空題和選擇題也有質的區別。首先,表現為填空題沒有備選項,因此,解答時既有不受誘誤的干擾之好處,又有缺乏提示的幫助之不足。對考生獨立思考和求解,在能力要求上會高一些。長期以來,填空題的答對率一直低于選擇題的答對率,也許這就是一個重要的原因。其次,填空題的解構,往往是在一個正確的命題或斷言中,抽去其中的一些內容(即可以使條件,也可以是結論),留下空位,讓考生獨立填上,考查方法比較靈活,在對題目的閱讀理解上,較之選擇題有時會顯得較為費勁。當然并非常常如此,這將取決于命題者對試題的設計意圖。
填空題的考點少,目標集中。否則,試題的區分度差,其考試的信度和效度都難以得到保證。這是因為:填空題要是考點多,解答過程長,影響結論的因素多,那么對于答錯的考生便難以知道其出錯的真正原因,有的可能是一竅不通,入手就錯了;有的可能只是到了最后一步才出錯,但他們在答卷上表現出來的情況一樣,得相同的成績,盡管他們的水平存在很大的差異。
解題策略:
由于填空題和選擇題有相似之處,所以有些解題策略是可以共用的,在此不再多講,只針對不同的特征給幾條建議:
一是填空題絕大多數是計算型(尤其是推理計算型)和概念(或性質)判斷性的試題,應答時必須按規則進行切實的計算或合乎邏輯的推演和判斷;
二是作答的結果必須是數值準確,形式規范,例如集合形式的表示、函數表達式的完整等,結果稍有毛病便是零分;
三是《考試說明》中對解答填空題提出的要求是“正確、合理、迅速”,因此,解答的基本策略是:快——運算要快,力戒小題大做;穩——變形要穩,防止操之過急;全——答案要全,避免對而不全;活——解題要活,不要生搬硬套;細——審題要細,不能粗心大意。
3.解答題——“步步為營”
題型特點:
解答題與填空題比較,同居提供型的試題,但也有本質的區別。
首先,解答題應答時,考生不僅要提供出最后的結論,還得寫出或說出解答過程的主要步驟,提供合理、合法的說明,填空題則無此要求,只要填寫結果,省略過程,而且所填結果應力求簡練、概括的準確;
其次,試題內涵解答題比起填空題要豐富得多,解答題的考點相對較多,綜合性強,難度較高,解答題成績的評定不僅看最后的結論,還要看其推演和論證過程,分情況判定分數,用以反映其差別,因而解答題命題的自由度較之填空題大得多。
評分辦法:
數學高考閱卷評分實行懂多少知識給多少分的評分辦法,叫做“分段評分”。而考生“分段得分”的基本策略是:會做的題目力求不失分,部分理解的題目力爭多得分。會做的題目若不注意準確表達和規范書寫,常常會被“分段扣分”,有閱卷經驗的老師告訴我們,解答立體幾何題時,用向量方法處理的往往扣分少。
解答題閱卷的評分原則一般是:第一問,錯或未做,而第二問對,則第二問得分全給;前面錯引起后面方法用對但結果出錯,則后面給一半分。
解題策略:
(1)常見失分因素:
①對題意缺乏正確的理解,應做到慢審題快做題;
②公式記憶不牢,考前一定要熟悉公式、定理、性質等;
③思維不嚴謹,不要忽視易錯點;
④解題步驟不規范,一定要按課本要求,否則會因不規范答題失分,避免“對而不全”如解概率題,要給出適當的文字說明,不能只列幾個式子或單純的結論,表達不規范、字跡不工整等非智力因素會影響閱卷老師的“感情分”;
⑤計算能力差失分多,會做的一定不能放過,不能一味求快,例如平面解析中的圓錐曲線問題就要求較強的運算能力;
⑥輕易放棄試題,難題不會做,可分解成小問題,分步解決,如最起碼能將文字語言翻譯成符號語言、設應用題未知數、設軌跡的動點坐標等,都能拿分。也許隨著這些小步驟的羅列,還能悟出解題的靈感。
(2)何為“分段得分”:
對于同一道題目,有的人理解的深,有的人理解的淺;有的人解決的多,有的人解決的少。為了區分這種情況,高考的閱卷評分辦法是懂多少知識就給多少分。這種方法我們叫它“分段評分”,或者“踩點給分”——踩上知識點就得分,踩得多就多得分。與之對應的“分段得分”的基本精神是,會做的題目力求不失分,部分理解的題目力爭多得分。
對于會做的題目,要解決“會而不對,對而不全”這個老大難問題。
有的考生拿到題目,明明會做,但最終答案卻是錯的———會而不對。
有的考生答案雖然對,但中間有邏輯缺陷或概念錯誤,或缺少關鍵步驟———對而不全。
因此,會做的題目要特別注意表達的準確、考慮的周密、書寫的規范、語言的科學,防止被“分段扣分”。經驗表明,對于考生會做的題目,閱卷老師則更注意找其中的合理成分,分段給點分,所以“做不出來的題目得一二分易,做得出來的題目得滿分難”。
對絕大多數考生來說,更為重要的是如何從拿不下來的題目中分段得點分。我們說,有什么樣的解題策略,就有什么樣的得分策略。把你解題的真實過程原原本本寫出來,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一個很困難的問題,確實啃不動,一個聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,先解決問題的一部分,能解決多少就解決多少,能演算幾步就寫幾步,尚未成功不等于失敗。特別是那些解題層次明顯的題目,或者是已經程序化了的方法,每一步得分點的演算都可以得分,最后結論雖然未得出,但分數卻已過半,這叫“大題拿小分”。
②跳步答題:解題過程卡在某一過渡環節上是常見的。這時,我們可以先承認中間結論,往后推,看能否得到結論。
如果不能,說明這個途徑不對,立即改變方向;
如果能得出預期結論,就回過頭來,集中力量攻克這一“卡殼處”。
由于考試時間的限制,“卡殼處”的攻克如果來不及了,就可以把前面的寫下來,再寫出“證實某步之后,繼續有……”一直做到底。也許,后來中間步驟又想出來,這時不要亂七八糟插上去,可補在后面。若題目有兩問,第一問想不出來,可把第一問作“已知”,先做第二問,這也是跳步解答。
③退步解答:“以退求進”是一個重要的解題策略。如果你不能解決所提出的問題,那么,你可以從一般退到特殊,從抽象退到具體,從復雜退到簡單,從整體退到部分,從較強的結論退到較弱的結論。總之,退到一個你能夠解決的問題。為了不產生“以偏概全”的誤解,應開門見山寫上“本題分幾種情況”。這樣,還會為尋找正確的、一般性的解法提供有意義的啟發。
④輔助解答:一道題目的完整解答,既有主要的實質性的步驟,也有次要的輔助性的步驟。實質性的步驟未找到之前,找輔助性的步驟是明智之舉。
如:準確作圖,把題目中的條件翻譯成數學表達式,設應用題的未知數等。答卷中要做到穩扎穩打,字字有據,步步準確,盡量一次成功,提高成功率。試題做完后要認真做好解后檢查,看是否有空題,答卷是否準確,所寫字母與題中圖形上的是否一致,格式是否規范,尤其是要審查字母、符號是否抄錯,在確信萬無一失后方可交卷。
(3)能力不同,要求有變:
由于考生的層次不同,面對同一張數學卷,要盡可能發揮自己的水平,考試策略也有所不同。
針對基礎較差、以二類本科為最高目標的考生而言要“以穩取勝”——這類考生除了知識方面的缺陷外,“會而不對,對而不全”是這類考生的致命傷。丟分的主要原因在于審題失誤和計算失誤。考試時要克服急躁心態,如果發現做不下去,就盡早放棄,把時間用于檢查已做的題,或回頭再做前面沒做的題。記住,只要把你會做的題都做對,你就是最成功的人!
針對二本及部分一本的同學而言要“以準取勝”——他們基礎比較扎實,但也會犯低級錯誤,所以,考試時要做到準確無誤(指會做的題目),除了最后兩題的第三問不一定能做出,其他題目大都在“火力范圍”內。但前面可能遇到“攔路虎”,要敢于放棄,把會做的題做得準確無誤,再回來“打虎”。
針對第一志愿為名牌大學的考試而言要“以新取勝”——這些考生的主攻方向是能力型試題,在快速、正確做好常規試題的前提下,集中精力做好能力題。這些試題往往思考強度大,運算要求高,解題需要新的思想和方法,要靈活把握,見機行事。如果遇到不順手的試題,也不必恐慌,可能是試題較難,大家都一樣,此時,使會做的題不丟分就是上策。
高考數學必考七個題型
第一,函數與導數
主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。
第二,平面向量與三角函數、三角變換及其應用
這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
第三,數列及其應用
這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統計
這部分和我們的生活聯系比較大,屬應用題。
第六,空間位置關系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
第七,解析幾何
高考的難點,運算量大,一般含參數。
高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。
針對數學高考強調對基礎知識與基本技能的考查我們一定要全面、系統地復習高中數學的基礎知識,正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應萬變。