2016國考行測輔導之常用基礎幾何公式總結
(2)三角形的中線:連結三角形一個頂點和它對邊中點的線段叫做三角形的中線。
(3)三角形的中位線:連結三角形兩邊中點的線段,叫做三角形的中位線。
(4)三角形的高:三角形一個頂點到它的對邊所在直線的垂線段,叫做三角形的高。
(5)內心:角平分線的交點叫做內心;內心到三角形三邊的距離相等。
垂線:高線的交點叫做垂線;三角形的一個頂點與垂心連線必垂直于對邊。
重心:中線的交點叫做重心;重心到每邊中點的距離等于這邊中線的三分之一。
外心:三角形三邊的垂直平分線的交點,叫做三角形的外心。外心到三角形的三個頂點的距離相等。
直角三角形:有一個角為90度的三角形,就是直角三角形。
直角三角形的性質:
(1)直角三角形兩個銳角互余;
(2)直角三角形斜邊上的中線等于斜邊的一半;
(3)直角三角形中,如果有一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;
(4)直角三角形中,如果有一條直角邊等于斜邊的一半,那么這條直角邊所對的銳角是30°;
(5)直角三角形中,c2=a2+b2(其中:a、b為兩直角邊長,c為斜邊長);
(6)直角三角形的外接圓半徑,同時也是斜邊上的中線;
直角三角形的判定:
(1)有一個角為90°;
(2)邊上的中線等于這條邊長的一半;
(3)若c2=a2+b2,則以a、b、c為邊的三角形是直角三角形;
2. 面積公式:
正方形=邊長×邊長;
長方形= 長×寬;
三角形= × 底×高;
梯形 = ;
圓形 = R2
平行四邊形=底×高
扇形 = R2
正方體=6×邊長×邊長
長方體=2×(長×寬+寬×高+長×高);
圓柱體=2πr2+2πrh;
球的表面積=4 R2
3. 體積公式
正方體=邊長×邊長×邊長;
長方體=長×寬×高;
圓柱體=底面積×高=Sh=πr2h
圓錐 = πr2h
球 =
4. 與圓有關的公式
設圓的半徑為r,點到圓心的距離為d,則有:
(1)d﹤r:點在圓內(即圓的內部是到圓心的距離小于半徑的點的集合);
(2)d=r:點在圓上(即圓上部分是到圓心的距離等于半徑的點的集合);
(3)d﹥r:點在圓外(即圓的外部是到圓心的距離大于半徑的點的集合);
線與圓的位置關系的性質和判定:
如果⊙O的半徑為r,圓心O到直線 的距離為d,那么:
(1)直線 與⊙O相交:d﹤r;
(2)直線 與⊙O相切:d=r;
(3)直線 與⊙O相離:d﹥r;
圓與圓的位置關系的性質和判定:
設兩圓半徑分別為R和r,圓心距為d,那么:
(1)兩圓外離: ;
(2)兩圓外切: ;
(3)兩圓相交: ( );
(4)兩圓內切: ( );
(5)兩圓內含: ( ).
圓周長公式:C=2πR=πd (其中R為圓半徑,d為圓直徑,π≈3.1415926≈ );
的圓心角所對的弧長 的計算公式: = ;
扇形的面積:(1)S扇= πR2;(2)S扇= R;
若圓錐的底面半徑為r,母線長為l,則它的側面積:S側=πr ;
圓錐的體積:V= Sh= πr2h。