公考資料分析十大速算技巧(3)
二、A、C兩城所在的省份2006年GDP量分別為:873.2/23.9%、1093.4/31.2%;同樣我們使用“差分法”進行比較:
873.2/23.9% 1093.4/31.2%
220.2/7.3%=660.6/21.9%
212.6/2%=2126/20%
上述過程我們運用了兩次“差分法”,很明顯:2126/20%>660.6/21.9%,所以873.2/23.9%>1093.4/31.2%;
因此2006年A城所在的省份GDP量更高。
【例5】比較32053.3×23487.1和32048.2×23489.1的大小
【解析】32053.3與32048.2很相近,23487.1與23489.1也很相近,因此使用估算法或者截位法進行比較的時候,誤差可能會比較 大,因此我們可以考慮先變形,再使用“差分法”,即要比較32053.3×23487.1和32048.2×23489.1的大小,我們首先比較 32053.3/23489.1和32048.2/23487.1的大小關系:
32053.3/23489.1 32048.2/23487.1
5.1/2
根據:差分數=5.1/2>2>32048.2/23487.1=小分數
因此:大分數=32053.3/23489.1>32048.2/23487.1=小分數
變型:32053.3×23487.1>32048.2×23489.1
要比較a×b與a′×b′的大小,如果a與a'相差很小,并且b與b'相差也很小,這時候可以將乘法a×b與a′×b′的比較轉化為除法ab′與a′ b的比較,這時候便可以運用“差分法”來解決我們類似的乘法型問題。我們在“化除為乘”的時候,遵循以下原則可以保證不等號方向的不變:
“化除為乘”原則:相乘即交叉。
★【速算技巧六:插值法】"插值法"是指在計算數值或者比較數大小的時候,運用一個中間值進行"參照比較" 的速算方式,一般情況下包括兩種基本形式:
一、在比較兩個數大小時,直接比較相對困難,但這兩個數中間明顯插了一個可以進行參照比較并且易于計算的數,由此中間數可以迅速得出這兩個數的大小關系。比如說A與B的比較,如果可以找到一個數C,并且容易得到A>C,而BA>B。
二、在計算一個數值f的時候,選項給出兩個較近的數A與B難以判斷,但我們可以容易的找到A與B之間的一個數C,比如說AC,則我們知道f=B(另外一種情況類比可得)。
★【速算技巧七:湊整法】"湊整法"是指在計算過程當中,將中間結果湊成一個"整數"(整百、整千等其它方便計算形式的數),從而簡化計算的速算方式。"湊整法"包括加/減法 的湊整,也包括乘/除法的湊整。在資料分析的計算當中,真正意義上的完全湊成"整數"基本上是不可能的,但由于資料分析不要求絕對的精度,所以湊成與"整 數"相近的數是資料分析"湊整法"所真正包括的主要內容。
★【速算技巧八:放縮法】要點:
"放縮法"是指在數字的比較計算當中,如果精度要求并不高,我們可以將中間結果進行大膽的"放"(擴大)或者"縮"(縮小),從而迅速得到待比較數字大小關系的速算方式。
要點:
若A>B>0,且C>D>0,則有:
1) A+C>B+D
2) A-D>B-C
3) A×C>B×D
4) A/D>B/C
這四個關系式即上述四個例子所想要闡述的四個數學不等關系,是我們在做題當中經常需要用到的非常簡單、非常基礎的不等關系,但卻是考生容易忽略,或者在考場之上容易漏掉的數學關系,其本質可以用"放縮法"來解釋。
★【速算技巧九:增長率相關速算法】計算與增長率相關的數據是做資料分析題當中經常遇到的題型,而這類計算有一些常用的速算技巧,掌握這些速算技巧對于迅速解答資料分析題有著非常重要的輔助作用。
兩年混合增長率公式:如果第二期與第三期增長率分別為r1與r2,那么第三期相對于第一期的增長率為:
r1+r2+r1× r2
增長率化除為乘近似公式:如果第二期的值為A,增長率為r,則第一期的值A′:
A′=A/1+r≈A×(1-r)
(實際上左式略大于右式,r越小,則誤差越小,誤差量級為r2)
平均增長率近似公式:如果N年間的增長率分別為r1、r2、r3……rn,則平均增長率:
r≈r1+r2+r3+……rn/n
(實際上左式略小于右式,增長率越接近,誤差越小)
求平均增長率時特別注意問題的表述方式,例如:
1.“從2004年到2007年的平均增長率”一般表示不包括2004年的增長率;
2.“2004、2005、2006、2007年的平均增長率”一般表示包括2004年的增長率。
“分子分母同時擴大/縮小型分數”變化趨勢判定:
1.A/B中若A與B同時擴大,則①若A增長率大,則A/B擴大②若B增長率大,則A/B縮小;A/B中若A與B同時縮小,則①若A減少得快,則A/B縮小②若B減少得快,則A/B擴大。
2.A/A+B中若A與B同時擴大,則①若A增長率大,則A/A+B擴大②若B增長率大,則A/A+B縮小;A/A+B中若A與B同時縮小,則①若A減少得快,則A/A+B縮小②若B減少得快,則A/A+B擴大。