全國T8聯考2024年高三第一次聯考數學試題與答案
T8聯考是什么意思
T8聯考,是在八省聯考前由新高考省市的八所重點中學組織的一場跨校聯考,試題含金量極高。
T8聯考僅各省的1所代表性的省重點中學參加,命題方也是這些學校協商出題,試卷質量可想而知,推薦不用參加T8聯考的考生也盡量做一下改試卷,因為能做到這樣高質量的試卷,可不是年年都有機會。
T8聯考參與學校:南師附中、華中師大附中、東北育才學校、福建福州一中、廣東省實驗中學、湖南師大附中、石家莊二中、西南大學附中。
簡單來說,就是學霸們的巔峰對決,俗稱“神仙打架”
部分省份除了以上重點中學參加外,還有其他高中校也會參與聯考,有這么多名校共同把關,強強聯合,想必對于新高考的熱點趨勢把握還是比較到位的,考試試卷有一定的參考價值,所有的同學們都可以試著做一下這套卷子。
T8聯考的考試時間是什么時候
2024高三八省重點高中(T8聯考)開考時間為12月25日-26日。T8聯考雖然也是八省參與,但并不是八省內所有高三生都參加,而是由新高考八省各派出省內重點高中學校進行PK,也就是8所名校之間的PK。具體考試時間如下:
日期 | 時間 | 科目 |
2023年12月25日(周一) | 上午9:00-11:30 | 語文 |
下午15:00-17:00 | 數學 | |
2023年12月26日(周二) | 上午8:00-10:00 | 外語(含聽力) |
上午10:30-11:45 | 物理/歷史 | |
下午14;30-15:45 | 四選二 化學/生物/政治/地理 | |
下午15:55-17:10 |
高三數學提分方法
一、夯實數學基礎的方法
首先課堂緊跟老師,認真聽每一節課,記好課堂筆記,有些學生喜歡自己課后自學,課堂不愛聽講,這是極錯誤的,因為老師對于高考的了解和對知識的掌握,遠遠勝過我們自學,緊跟老師是打好基礎最關鍵的一步
對課本基礎知識的學習,我們強烈建議大家使用思維導圖,可以把課本上的知識都畫成樹狀層,這樣更容易理解、記憶,這樣知識點不再是孤立而是成了網,這比光看書效果要好很多很多
二、數學正確的題海戰術方法
想學好數學,大量刷題確實很有必要,但你真的會刷題嗎多數同學雖然也做了大量的題目,但成績還是不好,核心原因就是做題忽略了最重要的一步,那就是總結反思每做完一道題目,大家還需要總結一下,問一下自己下面這些問題:它考查了哪些知識、自己有沒有掌握、題目的解題思路在哪里、突破口是什么、屬于哪種題型、此類題型有什么共同的套路、此類題型應該用什么方法來解答只有多問自己幾個為什么,你才能真正吃透一道題,達到做一道題會一類題
做題并不是越多越好,要知道題海戰術只是手段,我們最終的目的還是通過做題加深對知識的理解,掌握解題套路,提高做題速度,如果做題不總結,你刷再多題效果也不會明顯
高三數學答題技巧
一、數學三角函數題
注意數學歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。
二、數學數列題
1、證明一個數列是等差(等比)數列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2、最后一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。
三、數學立體幾何題
1、證明線面位置關系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系(符號問題、鈍角、銳角問題)。
四、數學導數、極值、最值、不等式恒成立(或逆用求參)問題
1、先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能并,用“和”或“,”隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);
2、注意最后一問有應用前面結論的意識;
3、注意分論討論的思想;
4、數學不等式問題有構造函數的意識;
5、恒成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);
6、整體思路上保6分,爭10分,想14分。
五、數學概率問題
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2、搞清是什么概率模型,套用哪個公式;
3、記準均值、方差、標準差公式;
4、求概率時,正難則反(根據p1+p2+。。。+pn=1);
5、注意計數時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
六、數學圓錐曲線問題
1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;
2、注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等;
3、戰術上整體思路要保7分,爭9分,想12分。